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Abstract

I develop a portfolio model that maximizes utility incorporating aversion to turnover

from a reference portfolio. Irrational turnover aversion becomes rational behavior in

the uncertain world. The usual expected utility loss minimization is sub-optimal due

to model parameter uncertainty and is improved substantially when augmented with

turnover aversion. Minimizing utility loss under high uncertainty requires an extreme

degree of turnover aversion. The equal-weight portfolio serves better as the reference

portfolio than the current portfolio even in the presence of transaction costs. The for-

mer renders less volatile portfolios and incurs lower transaction costs. This contradicts

the models accounting for transaction costs in optimization. Proposed models signifi-

cantly outperform various existing portfolio models.
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1 Introduction

The sensitivity of optimal portfolio models to the input parameters has long been plaguing

both academics and practitioners, and is one of the crucial reasons behind the slow adoption

of the models by the industry. Combined with the inevitable uncertainties in the input

∗This paper is accompanied by an internet appendix (Internet Appendix). The previous version of
this paper was entitled “Too Much Is Better than Optimal: Optimal Portfolio Choice under Parameter
Uncertainty and Transaction Cost.”
†Chulwoo Han is with Durham University. E-mail: chulwoo.han@durham.ac.uk.
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parameters, an optimal portfolio could turn out to be disastrous and investors’ reluctance

to adopt optimal portfolio models may as well be considered rational behavior.

There has been a considerable amount of effort dedicated to address estimation errors

and model sensitivity. One axis has been formed by the Bayesian approach: e.g., Klein

and Bawa (1976); Brown (1976, 1978); Jorion (1986); Black and Litterman (1992); Pástor

(2000); Pástor and Stambaugh (2000) among others. For a review of Bayesian models,

the reader is referred to Avramov and Zhou (2010). More recently, robust optimization

that optimizes the portfolio under a worst-case scenario became popular: e.g., Goldfarb and

Iyengar (2003); Fabozzi et al. (2007); Ceria and Stubbs (2016). Kan and Zhou (2007) and Tu

and Zhou (2011) optimally combine two or more portfolios so that the expected utility loss

is minimized.1 Incorporating transaction costs is also known to help reduce the sensitivity

and improve the performance after transaction costs: e.g., Gârleanu and Pedersen (2013);

DeMiguel et al. (2015); Olivares-Nadal and DeMiguel (2015). Other approaches include

imposing weight constraints (Jagannathan and Ma, 2003) or using a shrinkage method for

parameter estimation (Ledoit and Wolf, 2004).

While these models claim to alleviate the problems arising from parameter uncertainty

and perform better than the classical mean-variance model, DeMiguel et al. (2009) show that

none of the portfolio models considered in their paper consistently outperforms the näıve,

equal-weight portfolio. Their work triggered many researches that challenge the equal-weight

portfolio and claim to outperform it: e.g., Tu and Zhou (2011); Kirby and Ostdiek (2012);

Bessler et al. (2014); Han (2016). Their evaluation method which compares risky portfolios

derived from optimal portfolios has also been criticized for being unfair to some models (Kan

et al., 2016). Still, most optimal portfolios seem to struggle to outperform the equal-weight

portfolio consistently across assets and time.

Portfolio models that account for parameter uncertainty face two arduous challenges.

One challenge arises from the quantification of uncertainty. The exact distributions of the

parameter estimates are unknown and difficult to estimate. This problem is more severe

if the estimates involve subjective elements such as analyst forecasts. Another challenge is

that model parameters are usually nonlinear functions of unknown input parameters and

also need to be estimated. Model parameter estimation is a nontrivial problem and a näıve

plug-in method using input parameter estimates is likely to yield biased estimates. These

issues make the behavior of the optimal portfolio somewhat unpredictable and often result

in poor performance. Although the utility loss due to model parameter uncertainty can be

potentially large, existing models (e.g., Tu and Zhou, 2011; DeMiguel et al., 2015; Kan et al.,

2016) have ignored it.

1This type of models are referred to as a shrinkage estimator.

2



If the input and model parameters are subject to uncertainty, the investor would be reluc-

tant to invest in the optimal portfolio and willing to sacrifice a fraction of (ex-ante) utility to

have a more robust portfolio. Even without estimation errors, investors are psychologically

reluctant to extreme turnover, let alone the high transaction costs it involves. To reflect

this type of behavior in a portfolio choice problem, I introduce turnover aversion utility that

penalizes turnover from a reference portfolio.2

Turnover aversion is irrational behavior and results in a biased portfolio that allocates an

excessive weight to the reference portfolio. However, the turnover aversion utility maximiz-

ing portfolio is less volatile and outperforms the usual utility maximizing portfolios in the

presence of parameter uncertainty. Turnover aversion can also be incorporated into existing

shrinkage estimators such as Kan and Zhou (2007) and Tu and Zhou (2011) to enhance their

performance. These models aim to minimize the expected utility loss. However, with many

assumptions and model parameter estimation involved, their actual performance is often

unsatisfactory. As revealed by the simulation and empirical studies, their performance can

be substantially improved when augmented with turnover aversion: the expected utility loss

is minimized when these portfolios are shrunk further towards the reference portfolio. The

degree of turnover aversion required for the minimum utility loss can be unexpectedly high,

especially under a significant level of uncertainty.

Accounting for transaction costs in portfolio optimization is known to enhance robustness

and performance, and has been endorsed by several authors: e.g., Gârleanu and Pedersen

(2013); DeMiguel et al. (2015); Olivares-Nadal and DeMiguel (2015). On the contrary, I find

that using the equal-weight portfolio as the reference portfolio is far more effective than using

the current portfolio, which is similar to accounting for transaction costs. This holds true

even in the presence of transaction costs: the gap between the two versions indeed widens.

The former renders less volatile portfolios and produces considerably better, more robust

performance. Counter-intuitively, it also incurs lower transaction costs. This is a sharp

contrast to the conventional wisdom: when the parameter uncertainty is significant, the

current portfolio can be substantially different from the optimal portfolio, and penalizing

the deviation from it does not guarantee better performance nor lower transaction costs

compared to penalizing the deviation from the equal-weight portfolio.

Shrinking towards a reference portfolio does not necessarily involve a considerable utility

loss as illustrated in the following example. Using the four datasets used in the simulation

studies, the utility of the ex-post (true) optimal portfolio, U∗, and the utility of the equal-

weight portfolio, Uew, are calculated. Given a utility between Uew and U∗, the portfolio with

2Unlike the usual definition of turnover which refers to the change from the current portfolio, turnover in
this paper is defined more broadly as the change from any portfolio known at the time of rebalancing.
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the minimum distance (in the sense of the Euclidean norm) from the equal-weight portfolio is

then obtained via optimization. The curves in Figure 1 are constructed by connecting these

portfolios. In each chart, the horizontal axis represents the distance from the equal-weight

portfolio, and the vertical axis represents utility normalized by U∗. A quick visual inspection

reveals that the distance between the equal-weight portfolio and the optimal portfolio can

generally be reduced by more than half for only 10% loss of utility. This implies that a

robust portfolio can be constructed by shrinking towards the equal-weight portfolio while

sacrificing only a small fraction of utility.
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(c) D5. Fama-French
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(d) D8. Momentum

Figure 1: Minimum Distance Portfolios

This figure demonstrates the relationship between the robustness and utility loss of a portfolio. In each chart,
the solid line represents the portfolio with the minimum distance from the equal-weight portfolio given a
level of utility. The horizontal axis represents the distance from the equal-weight portfolio, and the vertical
axis represents the utility normalized by the utility of the true optimal portfolio.

To determine the optimal degree of turnover aversion, I propose a data-driven calibration
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method. This method proves to be effective and enhance portfolio performance significantly

when applied to various models and estimation window sizes. A fair and efficient portfolio

evaluation method that aggregates the results from several datasets is also offered. This

method facilitate performance evaluation when the test involves many datasets and perfor-

mance measures. Both simulation and empirical studies show that the turnover aversion

models perform superior compared to various existing models. They survive comprehensive

robustness tests that involve different datasets, optimization criteria, and sample periods.

2 Optimal Portfolio under Turnover Aversion

2.1 Utility Maximization

It is assumed that the investor maximizes a quadratic utility of the form

max
w

U(w) = w′µ− γ

2
w′Σw − δ

2
(w − w0)′G(w − w0), (1)

where µ ∈ RN and Σ ∈ RN×N are the mean and covariance matrix of N asset returns

in excess of the risk-free rate, w ∈ RN is the portfolio weights, and γ is the risk aversion

coefficient of the investor.3 The last term on the right hand side represents the investor’s

aversion to turnover from a reference portfolio w0, where δ is the turnover aversion coefficient

and G ∈ RN×N is a penalty matrix. The reference portfolio w0 can be any portfolio known at

the time of portfolio rebalancing: the equal-weight portfolio, wew, and the current portfolio,

wt−, are considered in this paper. While the turnover aversion term looks similar to quadratic

transaction costs when w0 = wt− (e.g., Gârleanu and Pedersen, 2013; Olivares-Nadal and

DeMiguel, 2015), it has no association with transaction costs and is better interpreted as the

investor’s aversion to turnover or “psychological transaction costs” arising from parameter

uncertainty: when the investor is not confident of the input parameter estimates, she would

be reluctant to invest in the optimal portfolio obtained from those estimates.

The optimal portfolio w∗ that maximizes the utility in (1) is given by4

w∗ = (γΣ + δG)−1(µ+ δGw0). (2)

If an asset return has a large variance, its mean estimate may well have a large estimation

error, and it is justifiable to penalize the turnover of that asset more severely. From this

perspective, a natural choice of G would be the covariance matrix, Σ. When G ≡ Σ, the

3Returns refer to excess returns throughout the paper unless otherwise noted.
4w∗ is used as a generic notation to denote any optimal portfolio throughout the paper.
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optimal portfolio becomes a convex combination of the Markowitz (1952) optimal portfolio,

wml = 1
γ
Σ−1µ, and the reference portfolio, w0:

w∗ =
γ

γ + δ
wml +

δ

γ + δ
w0. (3)

To implement w∗, unknown µ and Σ need to be estimated. If the asset returns are i.i.d.

normal random variables, the maximum likelihood (ML) estimates of µ and Σ, µ̂ and Σ̂, are

independent of each other and have the following distributions:

µ̂ ∼ N
(
µ,

Σ

T

)
, Σ̂ ∼ WN(T − 1,Σ)

1

T
, (4)

where T is the estimation window size, and N and WN respectively denote the normal and

Wishart distribution. To allow the case when asset returns are not i.i.d. or µ̂ and Σ̂ are

estimated separately, e.g., using different sample sizes, a slightly relaxed assumption,

µ̂ ∼ N
(
µ,

Σ

K

)
, Σ̂ ∼ WN(T − 1,Σ)

1

T
, (5)

for some constant K, is made.

An unbiased estimate of the Markowitz portfolio is then given by

ŵml =
1

γ
Σ̃−1µ̂, Σ̃ =

T

T −N − 2
Σ̂. (6)

However, as shown by Kan and Zhou (2007), plugging ŵml in (3) is not optimal in terms of

the expected utility loss. Therefore, I consider the following portfolio strategy

w(a, b) = aŵml + bw0, (7)

and find a and b so that the expected utility loss is minimized, or equivalently, the expected

out-of-sample utility (expected utility, henceforth) is maximized:

max
a,b

E[U(a, b)] = E

[
w(a, b)µ− γ

2
w(a, b)′Σw(a, b)− δ

2
(w(a, b)− w0)′Σ(w(a, b)− w0)

]
.

(8)
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Proposition 1. The optimal a and b that maximizes the expected utility in (8) are given by

a∗ =
γ

γ + δ
a∗0, (9)

b∗ =
γ

γ + δ
b∗0 +

δ

γ + δ
, (10)

where

a∗0 =
θ2 − ψ2

c1

(
N
K + θ2

)
− ψ2

, (11)

b∗0 =
c1

(
N
K + θ2

)
− θ2

c1

(
N
K + θ2

)
− ψ2

1

γ

w′0µ

w′0Σw0

, (12)

θ2 = µ′Σ−1µ, ψ2 = µ′0Σ−1µ, µ0 =
w′0µ

w′0Σw0

Σw0, (13)

and

c1 =
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
. (14)

See Appendix A.1 for proof. a∗0 and b∗0 are the optimal a and b when δ = 0. The optimal

portfolio is given by

w(a∗, b∗) = a∗ŵml + b∗w0

=
γ

γ + δ
(a∗0ŵml + b∗0w0) +

δ

γ + δ
w0

=
γ

γ + δ
(a∗0ŵml + (1− a∗0)wim) +

δ

γ + δ
w0,

(15)

where

wim =
1

γ

w′0µ

w′0Σw0

w0 =
1

γ
Σ−1µ0. (16)

Since w′0µ0 = w′0µ and wim is proportional to w0, wim can be interpreted as the Markowitz

portfolio when the mean returns are µ0. Estimation of a∗ and b∗ are provided in Ap-

pendix A.2.

When w0 = wew and δ = 0, this model becomes similar to the model of Tu and Zhou

(2011) except they set b = 1 − a. There is no reason to assume b = 1 − a apart from

the obvious advantage of having less parameters. Furthermore, under this restriction, the

proportion of ŵml to w0 is no longer invariant to γ.

Viewed as a function of δ, i.e., w∗(δ) = w(a∗, b∗|δ), the optimal portfolio can be rewritten

7



as

w∗(δ) =
γ

γ + δ
w∗ +

δ

γ + δ
w0, (17)

where w∗ = a∗0ŵml + b∗0w0 is the solution to the usual expected utility maximization problem

without the turnover aversion term. In fact, any shrinkage estimator of the form, w(a, b) =

aŵ+ bw0 for some portfolio ŵ, has the optimal solution given in (17) with w∗ = a∗0ŵ+ b∗0w0

being the optimal solution when δ = 0 (a∗0 and b∗0 here are generic notations to denote the

optimal values and not as defined in (11) and (12)).

2.2 Variance Minimization

Turnover aversion can also be incorporated into a variance minimization problem:

min
w

V (w) =
1

2
w′Σw +

δ

2
(w − w0)′Σ(w − w0)

subject to w′1N = 1,

(18)

where 1N ∈ RN is a vector of ones, and w′01N = 1 is assumed. The optimal portfolio that

solves this is given by

w∗ =
1

1 + δ
wmv +

δ

1 + δ
w0, (19)

where wmv = Σ−11N
1′NΣ−11N

is the global minimum-variance portfolio. It can be estimated unbi-

asedly from

ŵmv =
Σ̂−11N

1′N Σ̂−11N
. (20)

As before, I consider the following portfolio strategy

w(a) = aŵmv + (1− a)w0, (21)

and find a so that the expected variance is minimized:

min
a
E[V (a)] = E

[
1

2
w(a)′Σw(a) +

δ

2
(w(a)− w0)′Σ(w(a)− w0)

]
. (22)

Since ŵ′mv1N = 1 and w′01N = 1, the budget constraint is implicitly satisfied without further

restriction.
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Proposition 2. The optimal a that minimizes the expected variance in (22) is given by

a∗ =
1

1 + δ

σ2
0 − σ2

mv

σ2
0 −

(
1− N − 3

T −N + 1

)
σ2
mv

, (23)

where σ2
0 = w′0Σw0 and σ2

mv = w′mvΣwmv = (1′NΣ−11N)−1 are the variances of w0 and wmv,

respectively.

See Appendix B for proof and estimation of a∗.

2.3 Optimal Portfolio Choice under Constraints

One drawback of the proposed portfolio models is that it is difficult to extend them to

a constrained optimization problem, e.g., utility maximization with short-sale constraints.

This is also true for other models that maximize expected utility such as Kan and Zhou

(2007) and Tu and Zhou (2011). To account for parameter uncertainty in a constrained

problem, I adopt the following method. Let ŵ∗ denote the optimal portfolio that maximizes

expected utility without constraints. The expected return implied by ŵ∗ can be derived from

µ̄ = γΣ̂ŵ∗. (24)

The constrained problem is then solved as usual after substituting µ̂ with µ̄.

Even though this method does not maximize the expected utility subject to the con-

straints, it turns out to be effective in the empirical studies. The same approach is adopted

for a constrained variance minimization problem.

3 Data and Portfolio Models

3.1 The Data

The turnover aversion models are tested on the thirteen datasets described in Table 1 and

compared against the portfolio models listed in Table 3. The datasets are based on the

datasets used in DeMiguel et al. (2009), Kirby and Ostdiek (2012), and Kan et al. (2016),

but also include new ones. Except for the first dataset D1 which has the sample period from

1990.10 to 2015.12, all other datasets have the same sample period from 1951.01 to 2015.12.

The sample period refers to the out-of-sample period during which portfolios are rebalanced

and evaluated, and the samples for moments estimation extend further to the past. For

example, when T = 240, the mean and covariance matrix of the asset returns in the first
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month are estimated using the sample from 1931.01 to 1950.12. By using the same out-of-

sample period regardless of the estimation window size, the results from different estimation

window sizes (T = 60, 120, and 240 months in this paper) can be directly compared. The

moments of the asset returns are updated monthly during the sample period rolling the

estimation window.

Table 1: The Datasets

This table lists the datasets used in the simulation and empirical studies. The 8 international indices in
D1 are the gross returns on large/mid cap stocks from eight countries: Canada, France, Germany, Italy,
Japan, Switzerland, United Kingdom, and USA. The 20 portfolios with size-sort (D5, 6, 7, 11, 12, 20)
are from the corresponding 25 portfolios excluding the 5 largest portfolios. All data are from K. French
website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html) except D1,
which is from the MSCI website (https://www.msci.com/end-of-day-data-country).

Dataset Description N Sample Period

D1 8 International + World Indices 9 1990.10 - 2015.12
D2 10 Industry Portfolios + Market 11 1951.01 - 2015.12
D3 30 Industry Portfolios + Market 31 1951.01 - 2015.12
D4 3 Fama-French (FF) Factors 3 1951.01 - 2015.12
D5 20 FF Portfolios + Market 21 1951.01 - 2015.12
D6 20 FF Portfolios + FF 3 23 1951.01 - 2015.12
D7 20 FF Portfolios + FF 3 and Momentum 24 1951.01 - 2015.12
D8 10 Momentum Portfolios + Market 11 1951.01 - 2015.12
D9 10 Short-Term Reversal Portfolios + Market 11 1951.01 - 2015.12
D10 10 Long-Term Reversal Portfolios + Market 11 1951.01 - 2015.12
D11 20 Size/Momentum Portfolios + Market 21 1951.01 - 2015.12
D12 20 Size/Short-Term Reversal Portfolios + Market 21 1951.01 - 2015.12
D13 20 Size/Long-Term Reversal Portfolios + Market 21 1951.01 - 2015.12

Before assessing the performance of the portfolio models, it is worth understanding the

characteristics of the datasets. Table 2 reports a summary of the ex-post optimal portfolios,

i.e., Markowitz portfolios obtained from the mean and covariance matrix of the entire sample.

As evidenced from the sum of the absolute values of the weights (the fifth column), the ex-

post optimal portfolios are unrealistically highly leveraged in most datasets. They even

have a short position on the risky portfolio in D6 and D7. As shown in the last three

columns, these datasets also frequently experience negative expected returns on the global

minimum-variance portfolio, which will lead to a short risky portfolio position in the optimal

portfolio.5 High leverage arises largely from the inclusion of the market or factor portfolios:

these portfolios can be approximated by the other assets and the optimal portfolio often

has the form of a long-short strategy (sell the market and buy the other assets). Without

5There is a marked contrast between D5 which contains only the market portfolio and D6 and D7 which
contain all three Fama-French factors: adding the Fama-French factors results in higher leverage and short
positions on the risky portfolio.
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the factor portfolios, the datasets behave more nicely resulting in less leveraged portfolios.

Nevertheless, the empirical studies of this paper are primarily based on the datasets including

factor portfolios as these have been used in many previous studies, e.g., DeMiguel et al.

(2009). The results from the datasets without factor portfolios are provided in Internet

Appendix.

Table 2: Ex-post Optimal Portfolio Weights

This table summarizes the ex-post optimal portfolio weights from each dataset. The ex-post optimal portfolio
is defined as the Markowitz portfolio obtained from the sample moments of the entire sample. ‘minwi’ and
‘maxwi’ are respectively the minimum and maximum weights on the risky assets, ‘

∑
wi’ is the sum of the

risky asset weights, i.e., the weight of the risky portfolio, and ‘
∑
|wi|’, the sum of the absolute values of

the weights, measures the degree of leverage. The last three columns are the frequency of negative expected
returns on the global minimum-variance portfolio during the sample period for the estimation window size
T = 60, 120, and 240.

minwi maxwi

∑
wi

∑
|wi| P (µg < 0)

60 120 240

D1 -5.37 3.87 1.40 12.20 0.28 0.13 0.00
D2 -6.91 1.79 1.89 15.71 0.09 0.02 0.00
D3 -7.03 1.55 1.92 21.43 0.23 0.13 0.00
D4 0.53 2.12 3.98 3.98 0.10 0.02 0.00
D5 -2.32 3.54 2.34 26.74 0.22 0.09 0.00
D6 -4.17 3.89 -4.19 38.56 0.63 0.74 0.87
D7 -5.75 3.43 -3.64 41.90 0.66 0.75 0.88
D8 -4.02 2.47 1.53 14.40 0.17 0.11 0.06
D9 -1.42 1.45 1.51 9.64 0.23 0.19 0.12
D10 -3.55 1.31 1.46 10.67 0.15 0.08 0.00
D11 -4.23 3.79 2.39 25.21 0.11 0.00 0.00
D12 -7.12 3.65 1.24 31.71 0.20 0.22 0.15
D13 -2.65 2.37 2.21 18.79 0.14 0.01 0.00

3.2 The Portfolio Models

Table 3 lists the portfolio models that are compared in this paper. The ex-post optimal

portfolio (W*) is the Markowitz portfolio obtained from the sample moments of the entire

sample. The equal-weight portfolio (EW) is chosen as a benchmark, and other standard

portfolio strategies, i.e., the Markowitz optimal portfolio (ML), global minimum-variance

portfolio (MV), and their short-sale constrained versions (ML+, MV+) are also considered.

The models (VT, OC) of Kirby and Ostdiek (2012) are added as they are argued to out-

perform EW. The turnover minimization models (TML, TMV) of Han (2016), which seek a

sub-optimal portfolio with a minimum distance from a reference portfolio, are also included.

The three-fund rule (KZ) of Kan and Zhou (2007) and the shrinkage estimators (TZML,

TZKZ) of Tu and Zhou (2011) are included as they share the same approach to address
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parameter uncertainty and are similar to the proposed models when the turnover aversion

term is absent (δ = 0).

The turnover aversion models (TAML, TAMV) are tested using different degrees of

turnover aversion and two reference portfolios, wew and wt−.6 In addition, a model (TAMLK)

that estimates K in (5) instead of assuming K = T is examined. The estimation method is

described in Appendix A.3.

Variants of KZ, TZML, and TZKZ that incorporate turnover aversion are also considered.

When turnover aversion is incorporated into TZML or TZKZ, the optimal portfolio is given

by

wtz(δ) =
γ

γ + δ
wtz +

δ

γ + δ
w0, (25)

where wtz is the original Tu and Zhou portfolio (TZML or TZKZ).7 Extension of KZ is less

straightforward. In principle, it would be best to determine the coefficients on the three

portfolios simultaneously by letting

w(a, b, c) = aŵml + bŵmv + cw0, (26)

and determining a, b, and c so that the expected utility is maximized. The solution to this

problem is given in Appendix C. While theoretically superior, this formulation is difficult to

implement due to the complexity of model parameter estimation: simulations show that a

crude plug-in method using the ML estimates, µ̂ and Σ̂, performs unsatisfactorily. Instead,

using the generic solution in (17), the following form is employed:

wkz(δ) =
γ

γ + δ
wkz +

δ

γ + δ
w0, (27)

where wkz is the original Kan and Zhou three-fund rule.

Implementation details of each model can be found in Internet Appendix.

4 Simulation Studies

The turnover aversion models are first validated via simulation studies. Four datasets, D1,

D2, D5, and D8, out of the thirteen datasets in Table 1 are chosen for simulation. The

sample mean and covariance matrix of the entire sample are regarded as the true mean and

6More precisely, the portfolio weights of the previous month, wt−1, is used instead of wt− which reflects
the return over the past month. This is because wt− can have abnormal values when the portfolio is highly
leveraged and as a consequence influence the new portfolio adversely.

7Strictly speaking, Equation (25) holds only when w0 = wew, but is used also when w0 = wt−.
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Table 3: The Portfolio Models

This table lists the portfolio models considered in the simulation and empirical studies. The models with
‘+’ in their abbreviation are those subject to the short-sale constraint. The short-sale constraint is applied
only to risky assets. Implementation details of each model can be found in Internet Appendix.

Abbreviation Description

W* Ex-post optimal portfolio, i.e., the Markowitz portfolio obtained from the
sample moments of the entire sample.

EW Equal-weight portfolio.

Standard Portfolio Strategies
ML, ML+ Standard Markowitz (1952) mean-variance optimal portfolio.
MV, MV+ Global minimum-variance portfolio.

Kirby and Ostdiek (2012)
VT Volatility timing strategy.
OC, OC+ Optimal constrained portfolio: the Markowitz portfolio without the risk-free

asset.

Han (2016)
TML(τ), TML+(τ) Utility maximization-Turnover minimization. w0 = wew.
TMLc(τ), TMLc+(τ) Utility maximization-Turnover minimization. w0 = wt−.
TMV(τ), TMV+(τ) Variance minimization-Turnover minimization. w0 = wew.
TMVc(τ), TMVc+(τ) Variance minimization-Turnover minimization. w0 = wt−.
τ : tolerance factor

Kan and Zhou (2007)
KZ Kan and Zhou (2007) three-fund rule.
KZ(δ), KZc(δ) KZ with turnover aversion. KZ(δ): w0 = wew; KZc(δ): w0 = wt−.

Tu and Zhou (2011)
TZML Tu and Zhou (2011) model that combines ML with EW.
TZML(δ), TZMLc(δ) TZML with turnover aversion. TZML(δ): w0 = wew; TZMLc(δ): w0 = wt−.
TZKZ Tu and Zhou (2011) model that combines KZ with EW.
TZKZ(δ), TZKZc(δ) TZKZ with turnover aversion. TZKZ(δ): w0 = wew; TZKZc(δ): w0 = wt−.

Turnover Aversion Models
TAML(δ), TAML+(δ) Utility maximization with turnover aversion. w0 = wew.
TAMLc(δ), TAMLc+(δ) Utility maximization with turnover aversion. w0 = wt−.
TAMLK(δ) TAML(δ) with estimated K.
TAMV(δ), TAMV+(δ) Variance minimization with turnover aversion. w0 = wew.
TAMVc(δ), TAMVc+(δ) Variance minimization with turnover aversion. w0 = wt−.
δ: turnover aversion coefficient
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covariance matrix. The expected utility and variance are obtained from 10,000 iterations.8

These values are computed without the turnover aversion term as ex-post performance should

not be affected by turnover aversion.

4.1 Utility Maximization

Table 4 reports normalized expected utilities for the case of γ = 3. The first column repre-

sents the portfolio models, and the numbers in the header are estimation window sizes. The

figures in the table are averages across the datasets. Detailed results from each dataset can

be found in Internet Appendix.

Table 4: Expected Utility: γ = 3

This table reports the mean and standard error of the utilities of selected portfolios, obtained from 10,000
iterations. Utilities are normalized by that of W*. The reported values are the averages across the datasets;
D1, D2, D5, and D8. The numbers in the header are estimation window sizes. EW and EW* are equal-weight
portfolios adjusted to maximize utility, respectively using sample and true moments.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
EW* 0.230 0.230 0.230 0.230 0.230 0.000 0.000 0.000 0.000 0.000
EW -0.024 0.110 0.172 0.191 0.207 0.407 0.183 0.082 0.056 0.032
ML -6.094 -1.074 0.167 0.480 0.705 4.850 1.094 0.387 0.233 0.128
KZ 0.058 0.379 0.587 0.681 0.782 0.654 0.295 0.162 0.123 0.086
TZML 0.183 0.395 0.574 0.671 0.778 0.530 0.247 0.159 0.127 0.090
TZKZ 0.259 0.436 0.581 0.664 0.764 0.363 0.183 0.135 0.117 0.091
TAML(0) 0.200 0.402 0.576 0.672 0.778 0.507 0.238 0.156 0.126 0.090
TAML(1) 0.286 0.431 0.571 0.653 0.747 0.274 0.161 0.138 0.121 0.092
TAML(2) 0.312 0.424 0.541 0.611 0.693 0.185 0.140 0.132 0.117 0.092
TAML(3) 0.318 0.409 0.509 0.570 0.642 0.145 0.128 0.124 0.111 0.088
ML+ -0.144 0.153 0.291 0.335 0.374 0.744 0.297 0.130 0.087 0.050
TAML+(0) 0.280 0.311 0.347 0.366 0.389 0.079 0.068 0.055 0.046 0.034
TAML+(1) 0.281 0.311 0.345 0.365 0.387 0.065 0.059 0.050 0.043 0.031

Consistent with the findings in the literature, e.g., Tu and Zhou (2011) and Kan et al.

(2016), ML is outperformed by EW when the window size is small: T > 240 is required for

ML to outperform EW. KZ improves over ML significantly and outperforms both EW and

ML across all window sizes. It is however outperformed by the two models of Tu and Zhou

(2011). Of the two, TZKZ performs particularly well.

8For certain models, the expected utility can be obtained analytically: e.g., Kan et al. (2016) derive an
analytic formula for the expected utility of the Kan and Zhou (2007) three-fund rule. However, to calculate
both the mean and standard error of the utility, simulation is employed for all models. By sampling directly
from the distributions of µ̂ and Σ̂ rather than the asset returns, simulation efficiency can be improved.
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Comparing TAML(0) with TZML, TAML(0) is found to marginally, but consistently

outperform TZML. It also has smaller standard errors. This result is in favour of the proposed

two-parameter model over the one-parameter model of Tu and Zhou (2011). In fact, the

difference becomes more prominent when γ = 1 (available in Internet Appendix).

Of particular interest is the effect of turnover aversion, which can be examined by com-

paring the TAML models with different values of the turnover aversion coefficient δ. Perfor-

mance enhancement stemming from the inclusion of the turnover aversion term is substantial

when T is small: the expected utility of TAML(0) is 0.200 when T = 60, whereas those of

TAML(1) and TAML(2) are 0.286 and 0.312, respectively. These values are even higher than

the expected utility of EW* which assumes prior knowledge of the distribution. This result

is rather striking considering that TAML(δ), δ > 0, is a linear combination of TAML(0) and

EW*. Furthermore, the fact that incorporating turnover aversion causes the objective util-

ity function to drift away from the evaluation utility function makes the result particularly

remarkable. Due to this misalignment, the δ associated with the maximum utility declines

as T increases, i.e., as parameter uncertainty diminishes, and the turnover aversion models

eventually underperform TAML(0). This result suggests that a carefully chosen δ for a given

level of parameter uncertainty would improve the performance of the optimal portfolio. This

hypothesis is further investigated later in this section.

Incorporating turnover aversion does not only enhance the expected utility but also re-

duces its standard error considerably: e.g., when T = 60, the standard error of TAML(0) is

0.507, whilst those of TAML(1) and TAML(2) are only 0.274 and 0.185, respectively. Smaller

standard error implies a smaller chance of extreme losses over a finite investment horizon.

Jagannathan and Ma (2003) show that imposing short-sale constraints can reduce esti-

mation error even when the constraints are wrong. A similar conclusion can be drawn here:

ML+, TAML+(0), and TAML+(1) all exhibit superior performance to ML when T < 360.

This result is impressive considering the high leverage of the ex-post optimal portfolios as

reported in Table 2. The performance of TAML+ is particularly noteworthy: it outperforms

ML+ significantly and outperforms EW* across all T ’s. Besides, it has significantly lower

standard errors compared to ML+. This suggests that the proposed method of incorporat-

ing constraints into the turnover aversion models is effective. Nevertheless, a limitation of

short-sale constrained models is that their performance is suppressed even when T is large.

Unlike simulation, the real-world performance of optimal portfolios does not necessarily

improve with the estimation window size: DeMiguel et al. (2009) find that accumulating the

estimation window rather than rolling it improves the performance of optimal models only

slightly,9 whereas no apparent relationship between performance and window size can be

9B.2 of the online appendix.
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derived from the empirical results in Tu and Zhou (2011). It appears that beyond a certain

window size, parameter uncertainty does not diminish further or even rises again. From this

perspective, the turnover aversion models that show robust performance when T is small are

expected to demonstrate superior performance when applied to actual market data.

The same simulation is repeated with γ = 1 and the results are reported in Internet

Appendix. The overall results are similar to those with γ = 3 except the followings. When

γ = 1, the short-sale constrained models do not perform well anymore. The expected utilities

of these models are only about a half of the expected utilities of the TAML models. This

implies that the short-sale constraint could deprive less-risk-averse investors of opportunities

to seek additional returns. Another exception is that the performance difference between

TZML and TAML(0) becomes more prominent. This can be traced to the fact that the

allocation between ML and EW in TZML is γ-dependent.

4.1.1 Sensitivity to Misspecification of Mean Return

The assumption that the returns are i.i.d. random variables is rather strong and unrealistic,

and the expectation of the sample mean may well deviate from the true mean. To examine

the effect of misspecification of the mean, it is perturbed when random samples are drawn by

adding 0.2diag(µ)z to µ in (5), where diag(µ) is a diagonal matrix with µ in its diagonal, and

z is an N -dimensional standard normal random variable. Simulation results are reported in

Table 5.

It is striking how small errors in mean can deteriorate the performance of shrinkage

estimators: KZ, TZML, TZKZ, and TAML(0) all perform poorly and yield negative utilities

regardless of the size of T . In fact, the performance of these models worsens with T . This is

because these models put more weight on ML as T increases, ignoring the misspecification.

This may explain to some extent why some shrinkage estimators perform worse when the

estimation window size is larger: see, e.g., Table 6 of Tu and Zhou (2011). On the contrary,

the turnover aversion models are much more robust to misspecification. TAML with δ > 0

maintains positive expected utility and its performance improves with T . The short-sale

constrained models are also robust to the misspecification of the mean. Furthermore, the

turnover aversion and short-sale constrained models have much smaller standard errors.

Accounting for parameter uncertainty does help improve portfolio performance. KZ,

TZML, TZKZ, and TAML(0) all improve over ML and generally outperform EW even for

a moderately large T . However, since their model parameters need to be estimated, these

models are still sensitive to estimation errors and misspecification, and their actual perfor-

mance could be unexpectedly poor. Meanwhile, the turnover aversion models are robust
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Table 5: Expected Utility: γ = 3, Error in Mean

This table reports the mean and standard error of the utilities of selected portfolios, obtained from 10,000
iterations. To simulate misspecification of the mean, it is perturbed by adding 0.2diag(µ)z to µ in (5), where
diag(µ) is a diagonal matrix with µ in its diagonal, and z is an N -dimensional standard normal random
variable. Utilities are normalized by that of W*. The reported values are the averages across the datasets;
D1, D2, D5, and D8. The numbers in the header are estimation window sizes. EW and EW* are equal-weight
portfolios adjusted to maximize utility, respectively using sample and true moments.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
EW* 0.230 0.230 0.230 0.230 0.230 0.000 0.000 0.000 0.000 0.000
EW -0.027 0.108 0.171 0.191 0.206 0.415 0.181 0.086 0.056 0.034
ML -10.210 -3.321 -1.581 -1.139 -0.831 7.851 2.522 1.521 1.276 1.151
KZ -0.473 -0.335 -0.315 -0.325 -0.352 1.370 1.057 0.988 0.955 0.971
TZML -0.317 -0.302 -0.325 -0.342 -0.368 1.287 1.035 0.981 0.951 0.968
TZKZ -0.027 0.014 -0.043 -0.097 -0.180 0.902 0.767 0.814 0.829 0.892
TAML(0) -0.293 -0.291 -0.320 -0.338 -0.366 1.266 1.029 0.979 0.950 0.968
TAML(1) 0.039 0.091 0.121 0.133 0.141 0.681 0.558 0.541 0.532 0.546
TAML(2) 0.173 0.239 0.287 0.309 0.329 0.430 0.364 0.360 0.359 0.370
TAML(3) 0.235 0.303 0.357 0.382 0.406 0.305 0.270 0.272 0.274 0.282
ML+ -0.183 0.117 0.247 0.289 0.322 0.798 0.328 0.164 0.117 0.085
TAML+(0) 0.273 0.297 0.321 0.333 0.346 0.101 0.094 0.082 0.073 0.065
TAML+(1) 0.281 0.308 0.334 0.347 0.360 0.076 0.071 0.063 0.057 0.051

to misspecification and demonstrate superior performance when subject to large estimation

errors. In addition, they have much smaller standard errors.

4.1.2 Performance over a Finite Investment Horizon

The results in Table 4 and 5 are asymptotic properties. A real-world investment horizon is

finite and the performance of portfolios can be different. To examine the performance over a

finite investment horizon, portfolios are assumed to be managed for ten years during which

they are rebalanced monthly. As we now have the “current portfolio”, the TAML models

with w0 = wt− are also examined.

Table 6 reports the mean and standard deviation of the normalized certainty equivalents

(CE) obtained from 10,000 iterations. The results in the upper (lower) panel are before

(after) transaction costs. Transaction costs of 10 basis points (bp) for both buying and selling

risky assets and 0 bp for the risk-free asset are assumed. The mean certainty equivalents

are similar to the expected utilities in Table 4 and will not be discussed further. What is

more interesting is a comparison between the TAML models with w0 = wew (TAML(δ)) and

those with w0 = wt− (TAMLc(δ)). When T > 60, TAMLc(δ) has a higher CE than its

counterpart. Adding the current portfolio has an effect similar to accumulating estimation
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Table 6: Certainty Equivalent: γ = 3

This table reports the mean and standard error of the certainty equivalents (CE) of selected portfolios,
obtained from 10,000 iterations. Portfolios are assumed to be rebalanced monthly and managed for ten
years. CE’s are normalized by that of W*. The reported values are the averages across the datasets; D1,
D2, D5, and D8. The numbers in the header are estimation window sizes. EW and EW* are equal-weight
portfolios adjusted to maximize utility, respectively using sample and true moments.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.653 0.650 0.649 0.653 0.647
EW* 0.232 0.229 0.231 0.228 0.228 0.306 0.304 0.302 0.307 0.305
EW -0.018 0.114 0.175 0.191 0.206 0.385 0.358 0.338 0.334 0.322
ML -5.994 -1.021 0.193 0.494 0.715 1.778 1.024 0.873 0.812 0.748
KZ 0.064 0.388 0.596 0.685 0.785 0.545 0.559 0.577 0.591 0.597
TZML 0.188 0.400 0.581 0.675 0.781 0.478 0.505 0.546 0.569 0.586
TZKZ 0.261 0.439 0.586 0.666 0.765 0.449 0.469 0.495 0.515 0.533
TAML(0) 0.205 0.407 0.583 0.676 0.781 0.470 0.500 0.541 0.565 0.584
TAML(1) 0.290 0.434 0.575 0.654 0.746 0.431 0.455 0.477 0.489 0.494
TAML(2) 0.314 0.426 0.544 0.611 0.691 0.405 0.423 0.437 0.443 0.443
TAML(3) 0.320 0.410 0.511 0.570 0.640 0.387 0.400 0.409 0.413 0.411
ML+ -0.130 0.163 0.296 0.337 0.374 0.534 0.521 0.496 0.484 0.464
TAML+(0) 0.282 0.311 0.348 0.366 0.388 0.354 0.369 0.382 0.395 0.404
TAML+(1) 0.283 0.311 0.346 0.364 0.386 0.343 0.353 0.362 0.371 0.376
TAMLc(0) 0.126 0.446 0.596 0.680 0.781 0.804 0.589 0.561 0.571 0.585
TAMLc(1) 0.226 0.483 0.600 0.667 0.750 0.700 0.510 0.478 0.482 0.488
TAMLc(2) 0.272 0.490 0.585 0.639 0.707 0.650 0.475 0.440 0.441 0.442
TAMLc(3) 0.297 0.489 0.573 0.621 0.687 0.622 0.458 0.423 0.424 0.426

(a) Before Transaction Cost

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

W* 1.000 1.000 1.000 1.000 1.000 0.711 0.707 0.706 0.711 0.704
EW* 0.251 0.247 0.250 0.247 0.247 0.333 0.331 0.328 0.334 0.332
EW -0.035 0.117 0.187 0.205 0.222 0.418 0.388 0.367 0.363 0.350
ML -8.284 -1.655 -0.053 0.343 0.631 2.186 1.138 0.948 0.882 0.812
KZ -0.172 0.278 0.546 0.655 0.770 0.577 0.590 0.616 0.634 0.644
TZML 0.006 0.304 0.533 0.644 0.765 0.510 0.530 0.580 0.609 0.632
TZKZ 0.137 0.387 0.569 0.661 0.770 0.473 0.494 0.526 0.551 0.574
TAML(0) 0.030 0.315 0.536 0.645 0.765 0.500 0.525 0.575 0.605 0.629
TAML(1) 0.178 0.383 0.560 0.654 0.760 0.454 0.479 0.509 0.524 0.533
TAML(2) 0.236 0.395 0.542 0.623 0.715 0.428 0.448 0.467 0.477 0.479
TAML(3) 0.261 0.391 0.517 0.588 0.669 0.410 0.426 0.439 0.446 0.445
ML+ -0.185 0.154 0.309 0.357 0.400 0.578 0.564 0.539 0.525 0.504
TAML+(0) 0.288 0.326 0.370 0.392 0.417 0.383 0.399 0.415 0.429 0.439
TAML+(1) 0.291 0.326 0.369 0.390 0.415 0.372 0.383 0.393 0.403 0.409
TAMLc(0) 0.020 0.423 0.593 0.680 0.783 0.921 0.652 0.611 0.621 0.635
TAMLc(1) 0.152 0.480 0.617 0.689 0.776 0.787 0.556 0.517 0.522 0.528
TAMLc(2) 0.214 0.495 0.608 0.668 0.741 0.725 0.517 0.476 0.477 0.479
TAMLc(3) 0.248 0.498 0.599 0.652 0.722 0.691 0.497 0.457 0.459 0.462

(b) After Transaction Cost
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sample and TAMLc(δ) is anticipated to outperform TAML(δ) under the i.i.d. assumption.

Notwithstanding, it underperforms TAML(δ) when T = 60 both before and after transaction

costs, and has a higher standard error. This suggests that when the moments are subject to

large estimation errors, the current portfolio may well be far from the true optimal portfolio

and anchoring the portfolio to the current portfolio can be less effective than anchoring it to

a fixed-weight portfolio. As illustrated in the next section, the equal-weight portfolio indeed

serves better as the reference portfolio.

4.1.3 Optimal Degree of Turnover Aversion

The results so far suggest that turnover aversion does improve the performance of optimal

portfolios, and the optimal degree of turnover aversion decreases as estimation window size

increases and therefore parameter uncertainty diminishes. This section investigates the op-

timal degree of turnover aversion for four models; KZ, TZML, TZKZ, and TAML. These

models are similar in that they maximize the expected utility by optimally combining mul-

tiple portfolios.

Figure 2 displays the certainty equivalent of each model as a function of δ in the absence

of transaction costs. Solid lines are for w0 = wew and dashed lines are for w0 = wt−. Adding

the turnover aversion term normally improves the performance of the models, and its effect is

particularly noticeable when w0 = wew and T is small: e.g., the CE of KZ increases by 20% at

δ ≈ 1.6 when T = 120, while it continues to increase with δ within the considered range when

T = 60. Among the four models, only KZ does not contain wew in its original form and thus

benefits most by incorporating wew, whilst TZKZ which includes both wew and wkz benefits

least from turnover aversion. In contrast to the case of w0 = wew, penalizing the turnover

from wt− has little effect on performance when there is no transaction cost.10 This is because

the expected portfolio weights of the turnover aversion models with w0 = wt− converge to

those of their base models, whilst their variances are not particularly smaller. The moments

of the turnover aversion portfolio weights are established in the following proposition.

Proposition 3. Suppose that a portfolio w is rebalanced t times via a turnover aversion

model. Let wct and wet respectively denote the optimal portfolio at time t when w0 = wt− and

w0 = wew:

wct = (1− α)w∗t + αwct−1,

wet = (1− α)w∗t + αwew,
(28)

where w∗t is the optimal portfolio of the base model, and α = δ
γ + δ

. The first and second

10An exception to this is TAML, which is discussed further later in this section.

19



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
E

/C
E

*

T=60, w
ew

T=60, w
t-

T=120, w
ew

T=120, w
t-

T=240, w
ew

T=240, w
t-

(a) KZ

0 0.5 1 1.5 2 2.5 3 3.5 4
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C
E

/C
E

*

T=60, w
ew

T=60, w
t-

T=120, w
ew

T=120, w
t-

T=240, w
ew

T=240, w
t-

(b) TZML

0 0.5 1 1.5 2 2.5 3 3.5 4
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

C
E

/C
E

*

T=60, w
ew

T=60, w
t-

T=120, w
ew

T=120, w
t-

T=240, w
ew

T=240, w
t-

(c) TZKZ

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
E

/C
E

*

T=60, w
ew

T=60, w
t-

T=120, w
ew

T=120, w
t-

T=240, w
ew

T=240, w
t-

(d) TAML

Figure 2: Optimal Turnover Aversion: No Transaction Costs

This figure displays the certainty equivalents of four portfolio strategies for different values of δ and estimation
window sizes. Portfolios are assumed to be rebalanced monthly and managed for ten years. The vertical
axis represents the normalized certainty equivalent averaged across the datasets; D1, D2, D5, and D8.
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moments of the portfolio weights are given by:

E(wct ) = (1− αt)E(w∗t ) + αtw,

V (wcit) = (1− α)2V (w∗it + αw∗it−1 + · · ·+ αt−1w∗i1),

E(wet ) = (1− α)E(w∗t ) + αwew,

V (weit) = (1− α)2V (w∗it),

(29)

where wcit and weit are the i-th element of wct and wet , respectively. It follows that

E(wct )→ E(w∗t ) as t→∞, (30)

V (weit) < V (wcit) < V (w∗it). (31)

See Appendix D.1 for proof. Although wet is biased, V (weit) can be considerably smaller

than V (w∗it), resulting in better performance especially under high parameter uncertainty.

On the other hand, while wct is unbiased, V (wcit) can be close to V (w∗it) especially when T is

large, and the performance of wct can be similar to that of w∗t .

The effect of turnover aversion is more pronounced when transaction costs are taken into

account. The results in Figure 3 are obtained assuming transaction costs of 30 bp.11 In the

presence of transaction costs, the models with w0 = wew as well as those with w0 = wt−

improve portfolio performance, but the improvement is more prominent when w0 = wew. The

optimal δ that maximizes CE is unexpectedly large often exceeding the range considered:

recall that, with γ = 3, δ = 3 implies 50 percent on the reference portfolio. When w0 = wew,

the actual loading on wew is even higher than what δ implies as TZML, TZKZ, and TAML

already involve wew without turnover aversion.

It is striking that anchoring to wew is more effective than anchoring to wt− even in

the presence of transaction costs: the gap between the two versions indeed widens with

transaction costs. This is because, as opposed to our intuition, using wew usually incurs

lower transaction costs. To compare the transaction costs associated with the turnover

aversion models, the following proposition establishes the relationship between the expected

squared turnovers.12

Proposition 4. Let ∆wit = wit−wit−1. If E
[
∆w∗it∆w

c
it−1

]
> − α

2(1− α)
E
[
(∆wcit−1)2

]
, the

1110 bp and 50 bp were also tested and the overall pictures were similar to the case of 30 bp.
12In the proposition, turnover is defined as wit −wit−1 instead of wit −wit− = wit − (1 + rit−1)wit−1, for

simplicity. In the latter case, the inequalities hold under a slightly more complex assumption.
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Figure 3: Optimal Turnover Aversion: 30 bp Transaction Costs

This figure displays the certainty equivalents of four portfolio strategies for different values of δ and estimation
window sizes in the presence of 30 bp transaction costs. Portfolios are assumed to be rebalanced monthly
and managed for ten years. The vertical axis represents the normalized certainty equivalent averaged across
the datasets; D1, D2, D5, and D8.
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following inequalities hold:

E
[
(∆weit)

2
]
< E

[
(∆wcit)

2
]
< E

[
(∆w∗it)

2
]
. (32)

See Appendix D.2 for proof. E
[
∆w∗it∆w

c
it−1

]
> − α

2(1− α)
E
[
(∆wcit−1)2

]
is a reasonable

assumption as the correlation between ∆w∗it and ∆wcit−1 is usually small and negligible when

the estimation window is large. If they are uncorrelated, the following relationship can be

established.

Corollary 1. If E
[
∆w∗it∆w

c
it−1

]
= 0,

E
[
(∆weit)

2
]
< (1− α2)E

[
(∆wcit)

2
]
. (33)

Proof follows immediately from E
[
(∆wcit−1)2

]
< E [(∆wcit)

2]. The proposition suggests

that both turnover aversion models reduce transaction costs, but incorporating wew is more

effective especially when α is large.

TAMLc is different from the other turnover aversion models with w0 = wt− in that it

consists only of ŵml and wt− and their loadings are dynamically determined based on the

input parameters, whereas the other models consist of the base model and wt− and their

loadings are solely determined by δ. This feature leads to the superior performance of TAMLc

to TAML when the i.i.d. assumption holds and the estimation window is large. However,

as revealed in the case of T = 60, TAMLc can be outperformed by TAML when uncertainty

is high. In addition, TAML performance improves faster with δ. Since ŵml, wt−, and their

loadings are all subject to estimation errors, TAMLc is very sensitive and its performance

can be poor under large estimation errors. As will be seen later in the empirical studies,

TAMLc indeed performs very poorly when applied to real market data.

Unlike the conventional wisdom, shrinking towards the current portfolio does not appear

to be very effective and is usually dominated by shrinking towards the equal-weight portfolio.

The latter approach renders far less volatile portfolios and involves lower transaction costs,

leading to robust performance especially under high uncertainty and transaction costs.

The turnover aversion models can be extended by incorporating both wew and wt−:

w∗(δ, κ) = (1− κ)

(
γ

γ + δ
w∗ +

δ

γ + δ
w0

)
+ κwt−. (34)

Figure 4 presents simulation results from this extension. Solid lines represent the case of

κ = 0 and are the same as those in Figure 3. Incorporating both wew and wt− further

improves performance especially when T is small. Nevertheless, the gain from the inclusion
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of wt− diminishes with δ.
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Figure 4: Optimal Turnover Aversion from wew and wt−: 30 bp Transaction Costs

This figure displays the certainty equivalents of four extended portfolio strategies (Equation (34)) for different
values of δ and estimation window sizes in the presence of 30 bp transaction costs. κ is the loading on wt−.
Portfolios are assumed to be rebalanced monthly and managed for ten years. The vertical axis represents
the normalized certainty equivalent averaged across the datasets; D1, D2, D5, and D8.

4.2 Variance Minimization

Table 7 reports the results from variance minimization. The top panel reports expected

variances and the bottom panel reports sample variances from the finite investment horizon.

The standard global minimum-variance portfolio (MV) performs well even for a small

T : its expected variance is 27.6% higher than the ex-post optimal value when T = 60 and

only 11.5% higher when T = 120. Still, TAMV(0) yields consistently lower variances across
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all window sizes. TAMV(0) also has smaller standard errors. Meanwhile, incorporating

turnover aversion seems to have an adverse effect on variance minimization. This is perhaps

because the estimation error of the covariance matrix is not large enough to benefit from

turnover aversion. Both TAMVc(0) and TAMVc(1) perform comparably to TAMV(0).

Table 7: Expected and Sample Variances

This table reports the mean and standard error of the variances of selected portfolios, obtained from 10,000
iterations. In the second panel, portfolios are assumed to be rebalanced monthly and managed for ten years.
Variances are normalized by that of the ex-post global minimum-variance portfolio, MV*. The reported
values are the averages across the datasets; D1, D2, D5, and D8. The numbers in the header are estimation
window sizes.

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

MV* 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 0.000
MV 1.276 1.115 1.054 1.035 1.020 0.127 0.049 0.022 0.014 0.008
TAMV(0) 1.220 1.103 1.051 1.034 1.020 0.099 0.044 0.021 0.014 0.008
TAMV(1) 1.281 1.230 1.202 1.192 1.183 0.071 0.046 0.030 0.023 0.018

(a) Expected Variance

Mean Standard Error

60 120 240 360 600 60 120 240 360 600

MV* 1.000 1.000 1.000 1.000 1.000 0.129 0.129 0.130 0.130 0.129
MV 1.277 1.116 1.054 1.035 1.021 0.176 0.146 0.137 0.134 0.131
TAMV(0) 1.220 1.103 1.051 1.034 1.020 0.163 0.144 0.137 0.134 0.131
TAMV(1) 1.280 1.230 1.201 1.192 1.183 0.159 0.154 0.153 0.153 0.152
TAMVc(0) 1.240 1.106 1.051 1.033 1.020 0.172 0.145 0.137 0.134 0.131
TAMVc(1) 1.222 1.102 1.051 1.034 1.021 0.169 0.145 0.137 0.134 0.132

(b) Sample Variance

5 Empirical Studies

5.1 Portfolio Construction and Evaluation

Portfolios are rebalanced every month during the sample period based on the mean and

covariance estimates obtained from the rolling estimation window of size T = 60, 120, or

240. Monthly portfolio returns and performance measures are then calculated.

It is nontrivial to compare different portfolio models on a level playing field. DeMiguel

et al. (2009) compare the risky portfolios derived from the optimal portfolios by normalizing

the risky asset weights. This method however gives an unfair disadvantage to some models

that are not designed to maximize the Sharpe ratio. This issue is discussed in detail in

25



Kan et al. (2016) for the Kan and Zhou model. Another, more subtle and often overlooked

problem is that if the optimal weight of the risky portfolio (sum of the risky asset weights) is

negative, the maximum Sharpe ratio portfolio does not exist and the näıve scaling whereby

the weights are divided by their sum leads to the minimum Sharpe ratio portfolio as illus-

trated in Appendix E. In this case, the original portfolio and the derived risky portfolio have

opposite exposures to the risky assets and their performances will differ considerably.13 As

shown in Table 2, negative risky portfolio weights are indeed common especially when T is

small or in D6 and D7.

Comparing utility maximizing portfolios has its own problem as the results depend on

the choice of the risk aversion coefficient. Besides, for those portfolio strategies that do not

take the mean into account, e.g., EW, MV, and VT, adjusting the weights so that the utility

is maximized conflicts their nature as the adjustment involves the mean.

In this paper, portfolios are constrained so that they have the same ex-ante variance

(variance targeting). This creates a comparably level playing field for evaluation without

favoring a particular model. Imposing a risk constraint is also common in practical asset

allocation. If the ex-ante variance of an optimal portfolio is σ̂2
p and the target variance is

σ2
max, the constraint can be satisfied by scaling the portfolio weights with σmax/σ̂p.

14 In the

empirical studies, the target variance is defined as the variance of the equal-weight portfolio

over the entire sample period. Kirby and Ostdiek (2012) adjust portfolios so that they

have the same expected return as that of the equal-weight portfolio. While this is similar

to variance targeting, the results may be unreliable due to the sizeable estimation error in

mean. Imposing constraints on the mean is also less common in practice.

As a robustness test, utility maximizing portfolios are also compared. In this case, the

portfolios that are not designed to maximize utility, i.e., EW, MV, VT, TMV, and TAMV,

are compared without adjusting the weights so as to maximize utility.15 Ironically, these

models turn out to perform better unadjusted.

Portfolios are evaluated using four performance measures: certainty equivalent (CE),

13For this reason, DeMiguel et al. (2009) normalize portfolio weights by the absolute value of their sum.
In this case, however, the normalized portfolio still includes the risk-free asset.

14If the optimal portfolio has a short position on the risky portfolio, it is scaled by −σmax/σ̂p. See
Appendix E for details.

15One exception is TAMV+. TAMV+ solves the usual utility maximization problem employing the mean
implied by the unconstrained TAMV.
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Sharpe ratio (SR), turnover (TO), and leverage (LV). These are defined as follows:

CE = r̄p −
γ

2
s2
p; (35)

SR =
r̄p
sp

; (36)

TO =
1

NTo

To∑
t=1

N∑
i=1

|wi,t − wi,t−|; (37)

LV =
1

To

To∑
t=1

N∑
i=1

|wi,t|, (38)

where r̄p and sp are the mean and standard deviation of the portfolio returns over the sam-

ple period, To is the sample size, and wi,t− and wi,t are the weights of asset i immediately

before and after rebalancing at time t. For certainty equivalent, γ = 3 is used. Note that

turnover is not penalized when portfolio performance is evaluated. It is assumed that, while

the investor’s aversion to turnover plays a role during portfolio rebalancing, the utility of the

investor depends entirely on the mean and variance of the portfolio returns after rebalancing.

To assess the effect of transaction costs, SR and CE are calculated both before and after

transaction costs assuming transaction costs of 10 bp for buying and selling risky assets and

0 bp for the risk-free asset. LV is calculated to gauge the feasibility of the portfolios. Highly

leveraged portfolios are not desirable and unrealistic to many investors. While imposing

constraints on the asset weights can yield more feasible portfolios, its impact on portfolio

performance will be nontrivial, making the performance attributable to the unique charac-

teristics of individual models indistinguishable. Therefore, portfolios are evaluated without

weight constraints and LV is calculated to supplement the results. In addition, the results

under the weight constraint, |wi| ≤ 0.5, are provided in Internet Appendix for comparison.

Given thirteen datasets and four performance measures, a coherent evaluation and rank-

ing of the models is a formidable task. To facilitate evaluation, SR and CE are normalized by

the SR and CE of the ex-post optimal portfolio. Normalization helps measure the utility loss

and allows us to compare the performance of a portfolio across datasets. The normalized

measures are averaged across the datasets in order to generate a single measure for each

performance metric. Despite the fact that the summary statistics across datasets depend on

the choice of datasets, this provides a convenient way of comparing models. The empirical

analysis in this section is primarily based on the summary statistics and the results from

each dataset are referred to when necessary.

Forty-seven variants of the portfolio models in Table 3 are tested on the thirteen datasets

in Table 1, and the summary results on CE, TO, and LV are reported in Table 8 (variance
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targeting) and Table 9 (utility maximization) for T = 120. In each table, the columns

‘Mean’ and ‘Std’ are the mean and standard deviation of the normalized measures across the

datasets, and the column ‘P(>EW)’, referred to as outperformance ratio, is the proportion

of the datasets in which a model outperforms EW. The outperformance ratio is calculated

for each of the mean CE and SR before/after transaction costs. The numbers next to each

column are the ranks of the models based on the corresponding performance measure.

Internet Appendix provides full results including; results on SR, results from variance

targeting with weight constraints, results from T = 60 and 240, results from datasets without

factor portfolios, sub-period analysis results, and dataset-level results.

5.2 Main Findings

The most remarkable finding from the empirical studies is the performance enhancement

from turnover aversion. Consistent with the simulation results, incorporating turnover aver-

sion improves portfolio performance significantly, not only for the proposed models, TAML

and TAMV, but also for the existing models; KZ, TZML, and TZKZ. Recall that these

models already address parameter uncertainty before incorporating turnover aversion. In

general, a model involving three portfolios (KZ and TZKZ) outperforms a model involv-

ing two portfolios (TZML and TAML), and KZ is revealed to perform best overall when

augmented with turnover aversion.

Another important finding is the sharp contrast between the turnover aversion models

with w0 = wew and those with w0 = wt−. As anticipated from the simulation studies,

incorporating wt− is not as effective as incorporating wew, both before and after transaction

costs.16 When shrunk towards wt−, KZ, TZML, and TZKZ perform slightly worse than

their base models before transaction costs and slightly better after transaction costs. On

the other hand, shrinking towards wew improves the performance substantially both before

and after transaction costs. The results from TAML is particularly noteworthy. Contrary to

the simulation results where TAML with w0 = wt− performs better, it performs very poorly

when applied to the real market data significantly underperforming TAML with w0 = wew.

The contrast becomes more evident in utility maximization (Table 9): incorporating wew

considerably improves the performance of all models, whereas incorporating wt− is almost

harmful. When a portfolio is subject to large estimation errors, the current portfolio can be

substantially different from the optimal portfolio and penalizing turnover from it does not

necessarily improve performance even after transaction costs.

As shown in Table 9, the performance of most portfolios deteriorates without the variance

16As the models with w0 = wt− perform poorly, only one case (δ = 1) is reported.
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Table 8: Certainty Equivalent: Variance Targeting, T = 120

This table reports the normalized CE’s from variance targeting. ‘Mean’ and ‘Std’ are the mean and standard
deviation of the normalized CE’s across the datasets in Table 1, and ‘P(>EW)’ (outperformance ratio) is the
proportion of the datasets in which a portfolio outperforms EW. ‘TO’ and ‘LV’ are respectively the turnover
and leverage defined in Section 5.1, averaged across the datasets. The numbers next to each column are the
ranks of the portfolios based on the measure of that column. Details of the portfolio models can be found
in Section 3.2.

Before Transaction Cost After Transaction Cost TO LV

Mean Std P(>EW) Mean Std P(>EW)

W* 1.000 0.000 1.000 1.000 0.000 1.000 0.019 8.399
EW 0.242 46 0.210 10 0.000 46 0.243 41 0.211 9 0.000 46 0.003 1 1.045 2
ML 0.649 24 0.396 44 0.769 33 0.489 24 0.455 40 0.692 31 0.116 46 17.430 45
ML+ 0.475 27 0.196 8 1.000 1 0.470 25 0.198 8 1.000 1 0.011 13 1.249 10
MV 0.315 41 0.348 38 0.692 35 0.142 45 0.495 42 0.462 45 0.114 44 17.748 46
MV+ 0.324 39 0.227 12 0.692 35 0.320 38 0.231 12 0.615 36 0.009 9 1.632 14
VT 0.252 45 0.194 7 0.769 33 0.253 40 0.196 7 0.692 31 0.004 3 1.153 3
OC 0.717 22 0.304 25 0.846 31 0.588 22 0.354 32 0.692 31 0.096 40 14.261 36
OC+ 0.398 34 0.158 1 0.923 20 0.392 35 0.158 1 0.923 10 0.012 14 1.000 1
TML(.05) 0.705 23 0.383 42 0.846 31 0.601 21 0.438 38 0.692 31 0.079 26 10.608 19
TML+(.05) 0.466 28 0.180 4 1.000 1 0.466 26 0.181 4 1.000 1 0.009 8 1.166 5
TMLc(.05) 0.533 25 0.456 45 0.615 40 0.459 27 0.499 43 0.615 36 0.057 17 15.439 39
TMLc+(.05) 0.419 33 0.186 6 0.923 20 0.425 33 0.188 6 0.923 10 0.003 2 1.230 9
TMV(.05) 0.332 38 0.394 43 0.615 40 0.196 43 0.609 46 0.615 36 0.088 35 13.356 32
TMV+(.05) 0.336 37 0.259 15 0.692 35 0.336 37 0.264 14 0.692 31 0.006 6 1.555 12
TMVc(.05) 0.304 43 0.356 40 0.692 35 0.209 42 0.480 41 0.615 36 0.066 19 15.258 38
TMVc+(.05) 0.316 40 0.268 16 0.538 45 0.317 39 0.274 16 0.538 42 0.005 5 1.574 13
KZ 0.742 14 0.329 35 1.000 1 0.586 23 0.381 36 0.846 22 0.114 45 17.334 44
KZ(1) 0.792 3 0.304 26 1.000 1 0.656 8 0.344 29 0.846 22 0.103 42 15.855 40
KZ(2) 0.808 1 0.285 21 1.000 1 0.690 3 0.316 22 1.000 1 0.092 36 14.316 37
KZ(3) 0.804 2 0.271 18 1.000 1 0.701 1 0.295 18 1.000 1 0.082 29 12.970 28
KZc(1) 0.736 17 0.327 34 1.000 1 0.602 20 0.371 33 0.846 22 0.101 41 17.332 43
TZML 0.735 18 0.348 37 0.923 20 0.613 19 0.384 37 0.769 28 0.094 38 13.244 31
TZML(1) 0.743 13 0.323 31 0.923 20 0.637 16 0.351 31 0.846 22 0.084 33 11.969 25
TZML(2) 0.740 16 0.303 24 1.000 1 0.647 13 0.326 24 0.923 10 0.075 24 10.891 22
TZML(3) 0.730 20 0.287 22 1.000 1 0.648 12 0.306 20 0.923 10 0.068 21 9.976 18
TZMLc(1) 0.730 19 0.348 39 0.923 20 0.625 17 0.379 35 0.769 28 0.083 32 13.241 30
TZKZ 0.784 5 0.308 27 1.000 1 0.660 7 0.338 27 0.846 22 0.096 39 14.148 35
TZKZ(1) 0.791 4 0.285 20 1.000 1 0.689 4 0.306 21 0.923 10 0.082 28 12.284 27
TZKZ(2) 0.776 7 0.269 17 1.000 1 0.690 2 0.284 17 1.000 1 0.071 22 10.830 21
TZKZ(3) 0.755 8 0.256 14 1.000 1 0.682 5 0.267 15 1.000 1 0.063 18 9.680 16
TZKZc(1) 0.777 6 0.310 28 0.923 20 0.673 6 0.334 26 0.923 10 0.083 30 14.141 34
TAML(0) 0.743 12 0.339 36 0.923 20 0.623 18 0.372 34 0.769 28 0.093 37 13.103 29
TAML(1) 0.747 10 0.317 30 0.923 20 0.643 15 0.343 28 0.846 22 0.083 31 11.811 24
TAML(2) 0.741 15 0.299 23 1.000 1 0.649 9 0.320 23 0.923 10 0.075 23 10.728 20
TAML(3) 0.730 21 0.283 19 1.000 1 0.649 11 0.300 19 0.923 10 0.068 20 9.812 17
TAMLc(1) 0.504 26 0.520 46 0.615 40 0.441 32 0.580 45 0.615 36 0.047 16 14.131 33
TAMLK(0) 0.754 9 0.327 33 0.923 20 0.645 14 0.350 30 0.923 10 0.087 34 12.157 26
TAMLK(1) 0.744 11 0.311 29 1.000 1 0.649 10 0.328 25 0.923 10 0.078 25 10.933 23
TAML+(0) 0.462 29 0.179 2 1.000 1 0.459 28 0.180 2 1.000 1 0.011 12 1.202 7
TAML+(1) 0.458 30 0.180 3 1.000 1 0.456 29 0.180 3 1.000 1 0.010 11 1.186 6
TAML+(3) 0.447 31 0.182 5 1.000 1 0.446 30 0.183 5 1.000 1 0.009 10 1.162 4
TAMV(0) 0.292 44 0.359 41 0.615 40 0.121 46 0.520 44 0.538 42 0.112 43 17.067 41
TAMV(1) 0.360 36 0.235 13 0.615 40 0.339 36 0.237 13 0.615 36 0.021 15 3.452 15
TAMVc(1) 0.310 42 0.325 32 0.692 35 0.195 44 0.451 39 0.538 42 0.079 27 17.127 42
TAMV+(0) 0.439 32 0.210 9 0.923 20 0.442 31 0.213 10 0.923 10 0.006 7 1.539 11
TAMV+(1) 0.395 35 0.213 11 0.923 20 0.399 34 0.214 11 0.923 10 0.005 4 1.217 8
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Table 9: Certainty Equivalent: Utility Maximization, T = 120

This table reports the normalized CE’s from utility maximization. ‘Mean’ and ‘Std’ are the mean and
standard deviation of the normalized CE’s across the datasets in Table 1, and ‘P(>EW)’ (outperformance
ratio) is the proportion of the datasets in which a portfolio outperforms EW. ‘TO’ and ‘LV’ are respectively
the turnover and leverage defined in Section 5.1, averaged across the datasets. The numbers next to each
column are the ranks of the portfolios based on the measure of that column. Details of the portfolio models
can be found in Section 3.2.

Before Transaction Cost After Transaction Cost TO LV

Mean Std P(>EW) Mean Std P(>EW)

W* 1.000 0.000 1.000 1.000 0.000 1.000 0.095 20.840
EW 0.240 37 0.136 3 0.000 42 0.257 31 0.141 3 0.000 41 0.002 2 1.000 3
ML -2.919 45 2.794 45 0.000 42 -4.599 46 4.384 45 0.000 41 1.162 46 82.766 46
ML+ 0.038 40 0.256 39 0.385 38 0.002 40 0.277 34 0.231 38 0.045 20 3.054 16
MV 0.270 29 0.169 14 0.769 22 0.259 29 0.163 11 0.615 27 0.027 18 5.069 20
MV+ 0.251 32 0.144 7 0.692 29 0.265 25 0.148 8 0.692 18 0.004 7 1.000 3
VT 0.248 34 0.129 2 0.923 1 0.266 24 0.134 2 0.923 1 0.002 3 1.000 3
OC -2.576 44 2.691 44 0.000 42 -4.025 44 4.209 44 0.000 41 0.974 45 71.655 44
OC+ 0.251 33 0.123 1 0.615 35 0.258 30 0.125 1 0.615 27 0.012 9 1.000 3
TML(.05) -1.532 43 2.230 42 0.154 39 -2.520 43 3.297 42 0.000 41 0.703 43 54.997 43
TML+(.05) 0.217 38 0.201 20 0.615 35 0.209 33 0.207 19 0.462 35 0.029 19 2.365 12
TMLc(.05) -2.981 46 3.068 46 0.000 42 -4.379 45 4.665 46 0.000 41 0.887 44 75.925 45
TMLc+(.05) -0.006 41 0.222 30 0.154 39 -0.027 41 0.242 26 0.154 39 0.024 16 2.907 14
TMV(.05) 0.281 25 0.171 16 0.769 22 0.287 19 0.175 17 0.769 6 0.012 12 3.018 15
TMV+(.05) 0.254 31 0.138 5 0.769 22 0.271 23 0.143 5 0.769 6 0.002 4 1.000 7
TMVc(.05) 0.263 30 0.160 11 0.769 22 0.273 22 0.166 14 0.692 18 0.009 8 4.055 17
TMVc+(.05) 0.246 36 0.146 8 0.615 35 0.263 26 0.152 9 0.615 27 0.001 1 1.000 8
KZ 0.349 20 0.266 41 0.692 29 0.034 39 0.395 41 0.385 36 0.344 41 33.519 41
KZ(1) 0.564 11 0.250 38 0.846 17 0.385 13 0.314 37 0.692 18 0.226 35 25.197 35
KZ(2) 0.615 2 0.231 36 0.923 1 0.501 7 0.270 31 0.769 6 0.166 29 20.208 30
KZ(3) 0.617 1 0.214 25 0.923 1 0.537 1 0.239 25 0.769 6 0.131 25 16.885 26
KZc(1) 0.331 24 0.264 40 0.692 29 0.050 38 0.382 40 0.385 36 0.310 40 33.459 40
TZML 0.419 18 0.228 34 0.692 29 0.155 37 0.335 39 0.538 32 0.302 39 28.221 39
TZML(1) 0.557 13 0.234 37 0.846 17 0.406 12 0.291 35 0.692 18 0.199 33 21.240 32
TZML(2) 0.581 5 0.221 28 0.923 1 0.483 9 0.259 29 0.769 6 0.147 27 17.055 27
TZML(3) 0.573 7 0.205 23 0.923 1 0.505 5 0.232 24 0.769 6 0.116 24 14.268 24
TZMLc(1) 0.401 19 0.228 33 0.692 29 0.169 36 0.326 38 0.615 27 0.270 36 28.172 38
TZKZ 0.545 14 0.224 32 0.923 1 0.373 15 0.270 32 0.692 18 0.224 34 23.142 34
TZKZ(1) 0.602 3 0.219 27 0.923 1 0.505 4 0.242 27 0.769 6 0.151 28 17.428 28
TZKZ(2) 0.594 4 0.204 22 0.923 1 0.532 2 0.218 20 0.769 6 0.113 23 14.004 23
TZKZ(3) 0.571 9 0.190 18 0.923 1 0.530 3 0.200 18 0.846 5 0.090 21 11.725 21
TZKZc(1) 0.530 15 0.222 29 0.846 17 0.384 14 0.262 30 0.692 18 0.198 32 23.103 33
TAML(0) 0.442 17 0.224 31 0.846 17 0.193 35 0.307 36 0.538 32 0.290 38 27.359 37
TAML(1) 0.562 12 0.229 35 0.846 17 0.419 11 0.273 33 0.692 18 0.193 31 20.595 31
TAML(2) 0.580 6 0.217 26 0.923 1 0.486 8 0.248 28 0.769 6 0.143 26 16.541 25
TAML(3) 0.569 10 0.202 21 0.923 1 0.504 6 0.224 21 0.769 6 0.113 22 13.841 22
TAMLc(1) -1.346 42 2.408 43 0.000 42 -1.972 42 3.345 43 0.000 41 0.387 42 42.799 42
TAMLK(0) 0.470 16 0.201 19 0.923 1 0.251 32 0.224 22 0.538 32 0.270 37 25.418 36
TAMLK(1) 0.573 8 0.212 24 0.923 1 0.450 10 0.226 23 0.769 6 0.180 30 19.145 29
TAML+(0) 0.344 22 0.171 17 0.923 1 0.356 17 0.169 15 0.923 1 0.020 15 1.594 11
TAML+(1) 0.346 21 0.165 12 0.923 1 0.359 16 0.164 12 0.923 1 0.016 14 1.440 10
TAML+(3) 0.334 23 0.155 10 0.923 1 0.349 18 0.155 10 0.923 1 0.013 13 1.289 9
TAMV(0) 0.271 28 0.170 15 0.769 22 0.263 27 0.166 13 0.615 27 0.025 17 4.689 18
TAMV(1) 0.279 26 0.148 9 0.769 22 0.287 20 0.147 7 0.769 6 0.012 10 2.434 13
TAMVc(1) 0.273 27 0.168 13 0.769 22 0.279 21 0.171 16 0.692 18 0.012 11 4.905 19
TAMV+(0) 0.192 39 0.138 4 0.154 39 0.202 34 0.143 4 0.154 39 0.003 5 0.594 1
TAMV+(1) 0.247 35 0.140 6 0.692 29 0.261 28 0.143 6 0.692 18 0.004 6 0.862 2
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constraint and outperforming EW becomes far more challenging. This is because utility

maximizing portfolios are more sensitive to the mean estimate. In fact, EW also performs

considerably worse if its weights are adjusted so as to maximize utility (unreported). The

performance of the optimal portfolios that ignore parameter uncertainty, e.g., ML and OC,

drops most. KZ, TZML, TZKZ, and TAML without turnover aversion perform relatively

better, but they also experience a nontrivial performance drop. On the other hand, when

augmented with turnover aversion, these models perform robustly and their normalized

CE’s are not particularly lower than those from variance targeting. It is also worth noting

that a higher degree of turnover aversion is required to maximize performance in utility

maximization.

Detailed analyses of the results are given in Appendix F and the remainder of this section

is devoted to the calibration of δ.

5.3 Calibration of δ

So far, the turnover aversion models have been assessed using different values of δ. However,

δ needs to be determined beforehand in order to implement the models. This section proposes

a simple, but effective calibration method. The procedure is as follows:

1. For the first ten months into the sample period, δ is set to 3, 2, or 1 respectively when

T = 60, 120, or 240.

2. When t > 10, δ is calibrated each month so that the CE during 1, . . . , t−1 is maximized.

The optimal δ is found via line search spanning the range [0, 10].17

3. The above step is repeated for the CE after transaction costs.

The turnover aversion coefficient δ is calibrated for the four models; KZ, TZML, TZKZ,

and TAML, and the results are reported in Table 10 (variance targeting) and Table 11 (utility

maximization). δ̄∗b (δ̄∗a) denotes the mean of the calibrated δ without (with) transaction costs,

and its values are reported under ‘Before (After) Cost’. The last two rows of each model are

the results from the extension in (34) with κ = 0.1 and 0.2, respectively. Previous results

with a constant δ are also reproduced for comparison. The maximum CE within each model

and window size, and P(> EW) = 1 are highlighted in boldface.

The performance enhancement from the calibration is remarkable. The models with a

calibrated δ have higher CE’s than any of the constant-δ models and outperform EW more

17A maximum CE sometimes occurs at δ > 10, but the increment of CE is marginal when δ is large and
allowing a larger δ has little effect on the results.
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Table 10: Effects of δ Calibration: Variance Targeting

This table compares the turnover aversion models with calibrated δ against those with constant δ. The
reported values are the normalized CE’s averaged across the datasets in Table 1. δ̄∗b (δ̄∗a) denotes the mean of
the calibrated δ without (with) transaction costs, and its values are presented in the columns under ‘Before
(After) Cost’. The last two rows of each model are the results from the extension in (34) with κ = 0.1 and
0.2. The boldface figures under ‘Mean CE’ refer to the maximum CE within each model and window size,
and those under ‘P(>EW)’ refer to the cases in which EW is outperformed in all datasets.

Mean CE P(>EW)

Before Cost After Cost Before Cost After Cost

60 120 240 60 120 240 60 120 240 60 120 240

KZ 0.402 0.742 0.668 -0.041 0.586 0.597 0.69 1.00 0.85 0.46 0.85 0.69
KZ(1) 0.545 0.792 0.692 0.149 0.656 0.633 0.92 1.00 0.92 0.54 0.85 0.85
KZ(2) 0.623 0.808 0.692 0.276 0.690 0.642 0.92 1.00 1.00 0.54 1.00 0.92
KZ(3) 0.655 0.804 0.682 0.351 0.701 0.640 0.92 1.00 1.00 0.69 1.00 0.92
δ̄∗b , δ̄∗a 4.5 2.5 1.8 6.4 3.7 2.7
KZ(δ∗b ) 0.774 0.873 0.733 0.524 0.764 0.676 1.00 1.00 1.00 0.85 1.00 1.00
KZ(δ∗a) 0.763 0.857 0.734 0.559 0.765 0.684 1.00 1.00 1.00 0.92 1.00 1.00
KZ(δ∗a,.1) 0.742 0.845 0.728 0.554 0.760 0.680 1.00 1.00 1.00 0.92 1.00 1.00
KZ(δ∗a,.2) 0.729 0.833 0.720 0.556 0.754 0.675 1.00 1.00 1.00 0.92 1.00 1.00

TZML 0.653 0.735 0.653 0.350 0.613 0.594 0.85 0.92 0.77 0.69 0.77 0.69
TZML(1) 0.671 0.743 0.653 0.405 0.637 0.603 0.92 0.92 0.77 0.77 0.85 0.69
TZML(2) 0.666 0.740 0.646 0.431 0.647 0.604 1.00 1.00 0.92 0.77 0.92 0.77
TZML(3) 0.659 0.730 0.635 0.449 0.648 0.598 1.00 1.00 0.92 0.77 0.92 0.77
δ̄∗b , δ̄∗a 3.2 2.3 1.8 5.5 3.9 3.1
TZML(δ∗b ) 0.771 0.797 0.691 0.545 0.703 0.636 1.00 1.00 1.00 0.85 1.00 0.77
TZML(δ∗a) 0.743 0.793 0.693 0.573 0.715 0.648 1.00 1.00 0.92 0.85 1.00 0.92
TZML(δ∗a,.1) 0.711 0.784 0.688 0.552 0.710 0.645 1.00 1.00 0.92 0.85 1.00 0.92
TZML(δ∗a,.2) 0.703 0.777 0.684 0.556 0.708 0.643 1.00 1.00 0.92 0.85 1.00 0.92

TZKZ 0.597 0.784 0.685 0.241 0.660 0.631 0.92 1.00 1.00 0.54 0.85 0.85
TZKZ(1) 0.652 0.791 0.674 0.357 0.689 0.632 0.92 1.00 1.00 0.69 0.92 0.85
TZKZ(2) 0.662 0.776 0.657 0.413 0.690 0.622 0.92 1.00 1.00 0.77 1.00 0.92
TZKZ(3) 0.659 0.755 0.638 0.446 0.682 0.609 1.00 1.00 1.00 0.85 1.00 0.92
δ̄∗b , δ̄∗a 2.9 1.5 0.9 5.0 2.7 1.6
TZKZ(δ∗b ) 0.770 0.829 0.704 0.530 0.730 0.653 1.00 1.00 1.00 0.85 1.00 1.00
TZKZ(δ∗a) 0.745 0.821 0.708 0.576 0.739 0.660 1.00 1.00 1.00 0.92 1.00 1.00
TZKZ(δ∗a,.1) 0.720 0.810 0.703 0.563 0.734 0.658 1.00 1.00 1.00 0.92 1.00 1.00
TZKZ(δ∗a,.2) 0.708 0.802 0.698 0.563 0.731 0.655 1.00 1.00 1.00 0.92 1.00 1.00

TAML(0) 0.639 0.743 0.649 0.337 0.623 0.589 0.85 0.92 0.69 0.77 0.77 0.69
TAML(1) 0.639 0.747 0.649 0.373 0.643 0.598 0.85 0.92 0.69 0.77 0.85 0.69
TAML(2) 0.635 0.741 0.641 0.400 0.649 0.598 1.00 1.00 0.85 0.77 0.92 0.77
TAML(3) 0.621 0.730 0.630 0.411 0.649 0.593 1.00 1.00 0.85 0.77 0.92 0.77
δ̄∗b , δ̄∗a 3.2 2.1 1.9 5.6 3.7 3.3
TAML(δ∗b ) 0.739 0.800 0.688 0.518 0.704 0.633 1.00 1.00 1.00 0.85 1.00 0.77
TAML(δ∗a) 0.704 0.800 0.690 0.537 0.720 0.644 1.00 1.00 1.00 0.85 1.00 0.85
TAML(δ∗a,.1) 0.685 0.792 0.685 0.530 0.717 0.641 1.00 1.00 1.00 0.85 1.00 0.85
TAML(δ∗a,.2) 0.674 0.786 0.680 0.529 0.715 0.638 1.00 1.00 1.00 0.85 1.00 0.85

frequently. For instance, when T = 120, the mean CE of KZ is 0.742 before transaction costs

and it increases to 0.808 when δ = 2, whereas that of KZ(δ∗b ) is 0.873. The corresponding
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Table 11: Effects of δ Calibration: Utility Maximization

This table compares the turnover aversion models with calibrated δ against those with constant δ. The
reported values are the normalized CE’s averaged across the datasets in Table 1. δ̄∗b (δ̄∗a) denotes the mean of
the calibrated δ without (with) transaction costs, and its values are presented in the columns under ‘Before
(After) Cost’. The last two rows of each model are the results from the extension in (34) with κ = 0.1 and
0.2. The boldface figures under ‘Mean CE’ refer to the maximum CE within each model and window size,
and those under ‘P(>EW)’ refer to the cases in which EW is outperformed in all datasets.

Mean CE P(>EW)

Before Cost After Cost Before Cost After Cost

60 120 240 60 120 240 60 120 240 60 120 240

KZ -0.310 0.349 0.234 -0.994 0.034 0.059 0.08 0.69 0.54 0.00 0.38 0.38
KZ(1) 0.157 0.564 0.424 -0.285 0.385 0.337 0.54 0.85 0.69 0.15 0.69 0.54
KZ(2) 0.331 0.615 0.478 0.015 0.501 0.430 0.69 0.92 0.77 0.38 0.77 0.62
KZ(3) 0.404 0.617 0.488 0.161 0.537 0.462 0.69 0.92 0.77 0.46 0.77 0.69
δ̄∗b , δ̄∗a 4.5 2.7 3.2 6.5 4.3 4.3
KZ(δ∗b ) 0.506 0.669 0.559 0.298 0.542 0.496 1.00 1.00 1.00 0.54 0.85 0.77
KZ(δ∗a) 0.512 0.676 0.578 0.375 0.600 0.539 1.00 1.00 1.00 0.69 1.00 1.00
KZ(δ∗a,.1) 0.501 0.665 0.566 0.376 0.594 0.529 1.00 1.00 1.00 0.69 1.00 0.85
KZ(δ∗a,.2) 0.489 0.652 0.553 0.375 0.587 0.518 1.00 1.00 1.00 0.69 1.00 0.85

TZML 0.022 0.419 0.317 -0.514 0.155 0.173 0.31 0.69 0.54 0.08 0.54 0.46
TZML(1) 0.302 0.557 0.453 -0.048 0.406 0.381 0.69 0.85 0.69 0.23 0.69 0.62
TZML(2) 0.398 0.581 0.485 0.146 0.483 0.446 0.69 0.92 0.77 0.46 0.77 0.62
TZML(3) 0.432 0.573 0.485 0.238 0.505 0.465 0.77 0.92 0.77 0.62 0.77 0.77
δ̄∗b , δ̄∗a 3.7 2.1 2.8 6.1 3.8 4.1
TZML(δ∗b ) 0.506 0.627 0.548 0.304 0.492 0.482 0.92 0.92 0.92 0.69 0.69 0.69
TZML(δ∗a) 0.510 0.639 0.564 0.389 0.565 0.525 1.00 0.92 0.92 0.77 0.85 0.77
TZML(δ∗a,.1) 0.499 0.628 0.553 0.389 0.560 0.517 1.00 0.92 0.92 0.77 0.85 0.77
TZML(δ∗a,.2) 0.487 0.617 0.542 0.388 0.554 0.508 1.00 0.92 0.92 0.77 0.85 0.77

TZKZ 0.166 0.545 0.391 -0.233 0.373 0.298 0.54 0.92 0.62 0.08 0.69 0.54
TZKZ(1) 0.356 0.602 0.469 0.095 0.505 0.426 0.69 0.92 0.77 0.38 0.77 0.62
TZKZ(2) 0.415 0.594 0.479 0.226 0.532 0.459 0.77 0.92 0.77 0.62 0.77 0.69
TZKZ(3) 0.432 0.571 0.470 0.284 0.530 0.463 0.77 0.92 0.92 0.62 0.85 0.77
δ̄∗b , δ̄∗a 3.0 1.6 2.3 5.3 3.1 3.4
TZKZ(δ∗b ) 0.503 0.642 0.532 0.318 0.527 0.486 1.00 1.00 1.00 0.62 0.85 0.85
TZKZ(δ∗a) 0.502 0.646 0.549 0.394 0.580 0.520 1.00 1.00 1.00 0.77 1.00 0.92
TZKZ(δ∗a,.1) 0.491 0.636 0.539 0.392 0.575 0.511 1.00 1.00 1.00 0.77 1.00 0.85
TZKZ(δ∗a,.2) 0.479 0.626 0.528 0.389 0.570 0.502 1.00 1.00 1.00 0.77 1.00 0.85

TAML(0) 0.060 0.442 0.330 -0.452 0.193 0.191 0.38 0.85 0.54 0.08 0.54 0.46
TAML(1) 0.307 0.562 0.456 -0.029 0.419 0.386 0.69 0.85 0.77 0.23 0.69 0.54
TAML(2) 0.391 0.580 0.484 0.149 0.486 0.447 0.69 0.92 0.77 0.46 0.77 0.62
TAML(3) 0.420 0.569 0.483 0.233 0.504 0.463 0.77 0.92 0.77 0.62 0.77 0.77
δ̄∗b , δ̄∗a 3.8 1.8 2.7 6.2 3.6 4.0
TAML(δ∗b ) 0.487 0.618 0.545 0.293 0.480 0.480 0.92 0.92 0.92 0.69 0.69 0.69
TAML(δ∗a) 0.487 0.630 0.559 0.371 0.556 0.523 1.00 0.92 1.00 0.77 0.92 0.77
TAML(δ∗a,.1) 0.478 0.621 0.549 0.374 0.553 0.515 1.00 0.92 0.92 0.77 0.85 0.77
TAML(δ∗a,.2) 0.469 0.610 0.539 0.374 0.548 0.507 1.00 0.92 0.92 0.77 0.85 0.77

values after transaction costs are respectively 0.586, 0.701 (when δ = 3), and 0.765 (when

δ = δ∗a). As intended, the maximum CE’s before transaction costs are usually associated
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with δ∗b , and those after transaction costs are associated with δ∗a. Meanwhile, augmenting

the models with the current portfolio (the last two rows of each model) appears to do more

harm than good. This again raises a doubt on the effectiveness of shrinking towards the

current portfolio.

The effect of calibration is particularly pronounced in utility maximization: both the CE

and outperformance ratio are considerably larger after calibration. For instance, there are

several cases where KZ with a calibrated δ outperforms EW in all thirteen datasets after

transaction costs (δ = δ∗a; T = 120 or 240), whereas KZ with a constant δ outperforms EW

in ten datasets at most (δ = 2 or 3; T = 120).

The sub-period analysis results reported in Figure 5 and 6 show that the calibrated

models perform consistently over time. In particular, KZ and TZKZ maintain their superior

performance across the sub-periods with small variation.

5.4 Robustness Check

Comprehensive robustness tests are conducted and the results are provided in Internet Ap-

pendix. This includes sub-period analyses and tests on ten additional datasets which do

not contain the market and factor portfolios. Also included is an additional optimization

criterion: variance targeting with weight constraints, |wi| ≤ 0.5, on the risky assets. The

purpose of this criterion is to generate more realistic portfolios with low leverage.

When the models are tested on the new datasets, the results are qualitatively similar to

those presented here, but the resulting portfolios are usually less leveraged. This is because

it is no longer possible to short the market and buy other assets. Imposing the weight

constraints does not alter the results considerably and the rankings of the models are largely

preserved. The CE and SR tend to be slightly smaller with the constraints, but the optimal

portfolios perform more consistently across the datasets and outperform EW more frequently.

This result is similar to that from the short-sale constrained models, but relaxing the lower

bound seems to strike a better balance between robustness and performance. By and large,

the conclusions drawn in this paper remain valid in the additional datasets and optimization

criterion.

The sub-period analysis shows that the portfolios perform rather consistently across sub-

periods in variance targeting. The rankings of the portfolios are largely unchanged and the

outperformance ratios are also stable. On the other hand, many portfolios perform inconsis-

tently in utility maximization. For example, ML+ outperforms EW in eleven datasets in the

first sub-period but fails to outperform EW in any dataset in the fourth sub-period. In con-

trast, the turnover aversion models maintain stable, superior performance across sub-periods
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Figure 5: Sub-Period Performance with Calibrated δ: Variance Targeting

This figure visualizes the performance of the calibrated turnover aversion models in sub-periods (horizontal
axis). Each sub-period is ten-year long and five-years apart from each other, except the last sub-period,
SP13, which ends in 2015.12. The upper chart displays the normalized CE’s after transaction costs, and
the lower chart displays the outperformance ratios based upon them. The dotted lines in the upper chart
represent EW. The results are averages across the datasets, D2-D13 (D1 is omitted due to its shorter sample
period), and T = 120 is used.
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Figure 6: Sub-Period Performance with Calibrated δ: Utility Maximization

This figure visualizes the performance of the calibrated turnover aversion models in sub-periods (horizontal
axis). Each sub-period is ten-year long and five-years apart from each other, except the last sub-period,
SP13, which ends in 2015.12. The upper chart displays the normalized CE’s after transaction costs, and
the lower chart displays the outperformance ratios based upon them. The dotted lines in the upper chart
represent EW. The results are averages across the datasets, D2-D13 (D1 is omitted due to its shorter sample
period), and T = 120 is used.
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even in utility maximization.

The empirical results favor the equal-weight portfolio as the reference portfolio. A nat-

ural question that arises would then be whether any fixed-weight portfolio could yield the

same performance. While I do not test any other fixed-weight portfolios, there are a few

reasons to favor the equal-weight portfolio over other fixed-weight portfolios. First of all,

it is economically meaningful as it assumes that all the assets have the same return-risk

ratio, which is in line with the capital asset pricing model. Secondly, if we randomly choose

a portfolio under (strict) short-sale constraints, the expected portfolio is the equal-weight

portfolio. Furthermore, if the number of assets increases, it converges to the equal-weight

portfolio (See Appendix G for proof).

6 Concluding Remarks

Investors are reluctant to adopt an optimal portfolio when the parameters are subject to

estimation errors. I introduce the turnover aversion utility which reflects this behavior and

develop a portfolio model that maximizes it.

Turnover aversion is irrational behavior and maximizing turnover aversion utility results

in a biased portfolio with an excessive weight on the reference portfolio. However, this port-

folio is less volatile and performs robustly in the presence of parameter uncertainty. By

incorporating turnover aversion, existing shrinkage estimators can also be improved signif-

icantly. This suggests that the usual method of maximizing the expected utility (without

turnover aversion) is sub-optimal due to model parameter uncertainty.

Penalizing the turnover from the equal-weight portfolio renders substantially better per-

formance than penalizing the turnover from the current portfolio even in the presence of

transaction costs. Indeed, the former incurs lower transaction costs. This result is a sharp

contrast to the widely-accepted belief that accounting for transaction costs improves per-

formance and reduces transaction costs: this is perhaps true, but the effect appears rather

trivial compared to using the equal-weight portfolio.

A data-driven calibration method to determine the optimal degree of turnover aversion is

offered. This method is readily implementable and revealed to be very effective, generating

superior performance when applied to various models and circumstances. Comprehensive

robustness tests confirm that the above findings are valid over different sample periods,

datasets, and optimization criteria.

Classical portfolio optimization models suffer from parameter uncertainty, and there are

many advanced models that address this issue. But then again, these models face the chal-

lenge of quantifying uncertainty and estimating model parameters. The turnover aversion
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models perform superior by mitigating sensitivity to the “uncertainty of parameter uncer-

tainty.” Irrational, excessive aversion to turnover is indeed rational behavior in the uncertain

world.

A Utility Maximization

A.1 Proof of Proposition 1

The expected utility can be rearranged as follows:

E[U(a, b)] = aE[ŵml]
′µ+ bw′0µ−

γ

2

(
a2E[ŵ′mlΣŵml] + 2abE[ŵml]

′Σw0 + b2w′0Σw0

)
− δ

2

(
a2E[ŵ′mlΣŵml] + 2a(b− 1)E[ŵml]

′Σw0 + (b− 1)2w′0Σw0

)
.

(A.1)

Differentiating the expected utility with respect to a and b, the first order conditions are

given by

∂E[U(a, b)]

∂a
= E[ŵml]

′µ− aγE[ŵ′mlΣŵml]− bγE[ŵml]
′Σw0

− aδE[ŵ′mlΣŵml]− (b− 1)δE[ŵml]
′Σw0 = 0, (A.2)

∂E[U(a, b)]

∂b
= w′0µ− aγE[ŵml]

′Σw0 − bγw′0Σw0

− aδE[ŵml]
′Σw0 − (b− 1)δw′0Σw0 = 0. (A.3)

Solving for a and b,

a∗ =
1

(γ + δ)

E[ŵml]
′µ− w′0µ

E[ŵml]
′Σw0

w′0Σw0

E[ŵ′mlΣŵml]− E[ŵml]′Σw0
E[ŵml]

′Σw0

w′0Σw0

, (A.4)

b∗ =
1

(γ + δ)

E[ŵml]
′µ− w′0µ

E[ŵ′mlΣŵml]
E[ŵml]

′Σw0

E[ŵml]′Σw0 − w′0Σw0
E[ŵ′mlΣŵml]
E[ŵml]

′Σw0

+
δ

γ + δ
. (A.5)

Since µ̂ and Σ̂ are independent of each other and

µ̂ ∼ N

(
µ,

Σ

K

)
, Σ̂ ∼ WN(T − 1,Σ)

1

T
, (A.6)
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it follows that

E[Σ̃−1] = Σ−1, E[µ̂Σ−1µ̂] =
N

K
+ θ2, (A.7)

where θ2 = µ′Σ−1µ. The latter equation is from Kµ̂Σ−1µ̂ ∼ χ2
N(Kµ′Σ−1µ). Also, it can be

shown that (see Kan and Zhou (2007) and the references therein)

E[µ̂′Σ̃−1ΣΣ̃−1µ̂] = c1

(
N

K
+ θ2

)
, (A.8)

where c1 = (T−2)(T−N−2)
(T−N−1)(T−N−4)

. Then,

E[ŵml] =
1

γ
Σ−1µ, (A.9)

E[ŵ′mlΣŵml] =
c1

γ2

(
N

K
+ θ2

)
. (A.10)

Substituting (A.9) and (A.10) into (A.4) and (A.5),

a∗ =
γ

γ + δ
a∗0, (A.11)

b∗ =
γ

γ + δ
b∗0 +

δ

γ + δ
, (A.12)

where

a∗0 =
θ2 − ψ2

c1

(
N
K + θ2

)
− ψ2

, (A.13)

b∗0 =
c1

(
N
K + θ2

)
− θ2

c1

(
N
K + θ2

)
− ψ2

1

γ

w′0µ

w′0Σw0

, (A.14)

ψ2 = µ′0Σ−1µ, µ0 =
w′0µ

w′0Σw0

Σw0. (A.15)

A.2 Estimation of a∗ and b∗

Estimation of a∗ and b∗ involves estimation of θ2, ψ2, and wim. For θ2 and ψ2, the method

proposed by Kan and Zhou (2007) is adopted with modification for the different distributional

assumption of µ̂.

• Estimation of θ2
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Since

Kµ̂Σ−1µ̂ ∼ χ2
N(Kµ′Σ−1µ),

µ̂′Σ−1µ̂

µ̂′(T Σ̂)−1µ̂
∼ χ2

T−N , (A.16)

and they are independent of each other, it follows that

K

T
µ̂′Σ̂−1µ̂ ∼ N

T −N
FN,T−N(Kµ′Σ−1µ), (A.17)

where F is a noncentral F -distribution. Following the proof in the appendix of Kan

and Zhou (2007), the estimate of θ2 is given by

θ̃2 =
(T −N − 2)θ̂2 −N

K
+

2(θ̂2)N/2(1 + θ̂2)−(T−2)/2

KBθ̂2/(1+θ̂2)(N/2, (T −N)/2)
, (A.18)

where

θ̂2 =
K

T
µ̂′Σ̂−1µ̂, (A.19)

and Bx(a, b) =
∫ x

0
ya−1(1− y)b−1dy is an incomplete beta function.

• Estimation of ψ2

Since
K(w′0µ̂)2

w′0Σw0

∼ χ2
1

(
K(w′0µ)2

w′0Σw0

)
,

Tw′0Σ̂w0

w′0Σw0

∼ χ2
T−1, (A.20)

and they are independent of each other, it follows that

K

T

K(w′0µ̂)2

w′0Σ̂w0

∼ 1

T − 1
F1,T−1

(
K(w′0µ)2

w′0Σw0

)
. (A.21)

The estimate of ψ2 is then given by

ψ̃2 =
(T − 3)ψ̂2 − 1

K
+

2(ψ̂2)1/2(1 + ψ̂2)−(T−2)/2

KBψ̂2/(1+ψ̂2)(1/2, (T − 1)/2)
, (A.22)

where

ψ̂2 =
K

T

(w′0µ̂)2

w′0Σ̂w0

. (A.23)

• Estimation of wim

From Tw′0Σ̂w0 ∼ w′0Σw0 ·χ2
T−1,

w′0Σw0

Tw′0Σ̂w0

∼ inv-χ2
T−1, (A.24)
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and

E

[
1

w′0Σ̂w0

]
=

T

T − 3

1

w′0Σw0

. (A.25)

Therefore, an unbiased estimate of wim is given by

w̃im =
1

γ

T − 3

T

w′0µ̂

w′0Σ̂w0

w0. (A.26)

Simulation studies suggest that the optimal portfolio with the above estimates some-

times underperforms the more restricted model of Tu and Zhou (2011), especially when T

is small. Meanwhile, assuming wim = c
γ
w0 for some constant c appears to yield more robust

performance. This can be justified as
w′0µ

w′0Σw0
should be constant when the returns are i.i.d.

Accordingly, wim = c
γ
w0 with c = 3 rather than w̃im is used in the empirical studies of the

paper.

A.3 Estimation of K

Let Tc denote a month during the sample period. For the first 119 months into the sample

period, K = T is assumed. When Tc ≥ 120, the covariance matrix of µ̂, Σµ̂, is estimated

employing the method of Lo and MacKinlay (1988):

Σ̃µ̂ =
Tc + T − 1

Tc − 1
Σ̂µ̂, (A.27)

where Σ̂µ̂ is the ML estimate of Σµ̂. Let Σ̄ denote the average of Σ̂:

Σ̄ =
1

Tc

Tc∑
t=1

Σ̂t, (A.28)

where Σ̂t is Σ̂ at month t. K is determined so that the distance between 1
K

Σ̄ and Σ̃µ̂ is

minimized. Defining the distance as the Frobenius norm of the lower triangular part of

(Σ̄−KΣ̃µ̂), K is obtained from

K =
v′1v2

v′1v1

, v1 = vech(Σ̃µ̂), v2 = vech(Σ̄), (A.29)

where vech(·) is the half-vectorization operator.
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B Variance Minimization

B.1 Proof of Proposition 2

Differentiating the expected variance with respect to a, the first order condition is given by

∂E[V (a)]

∂a
= (1 + δ)aE[(ŵmv − w0)′Σ(ŵmv − w0)] + E[(ŵmv − w0)′Σw0] = 0. (B.1)

Solving for a,

a∗ =
1

1 + δ

w′0Σw0 − E[ŵmv]
′Σw0

E[ŵ′mvΣŵmv] + w′0Σw0 − 2E[ŵmv]′Σw0

. (B.2)

From Kan and Smith (2008),

E[ŵmv] =
Σ−11N

1′NΣ−11N
, (B.3)

E[ŵ′mvΣŵmv] =
T − 2

T −N − 1

1

1′NΣ−11N
. (B.4)

Substituting (B.3) and (B.4) into (B.2),

a∗ =
1

1 + δ

σ2
0 − σ2

mv

σ2
0 −

(
1− N − 1

T −N − 1

)
σ2
mv

, (B.5)

where σ2
0 = w′0Σw0 and σ2

mv = w′mvΣwmv = (1′NΣ−11N)−1 are the variances of w0 and wmv,

respectively.

B.2 Estimation of a∗

Unbiased estimates of σ2
0 and σ2

mv can be obtained as follows:

σ̃2
0 =

T

T − 1
w′0Σ̂w0, σ̃2

mv =
T

T −N
1

1′N Σ̂−11N
. (B.6)

It can be seen that with the above estimates, 0 < a∗ < 1.
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C Kan and Zhou (2007) Three-Fund Rule with Turnover

Aversion

Consider a portfolio strategy of the form

w(a, b, c) = aŵml + bw̃mv + cw0, (C.1)

where

ŵml =
1

γ
Σ̃−1µ̂, w̃mv =

1

γ
Σ̃−11N . (C.2)

The problem is to determine a, b, and c so that the expected utility is maximized:

max
a,b,c

E[U(a, b, c)] =E
[
w(a, b, c)µ− γ

2
w(a, b, c)′Σw(a, b, c)

−δ
2

(w(a, b, c)− w0)′Σ(w(a, b, c)− w0)

]
.

(C.3)

Differentiating the expected utility with respect to the model parameters, the first order

conditions are given by

∂E[U(a, b, c)]

∂a
= B1 − a(γ + δ)A1 − b(γ + δ)A12 − c(γ + δ)A01 + δA01 = 0, (C.4)

∂E[U(a, b, c)]

∂b
= B2 − a(γ + δ)A12 − b(γ + δ)A2 − c(γ + δ)A02 + δA02 = 0, (C.5)

∂E[U(a, b, c)]

∂c
= B0 − a(γ + δ)A01 − b(γ + δ)A02 − c(γ + δ)A0 + δA0 = 0, (C.6)
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where

B0 = E[w′0µ] = w′0µ, (C.7)

B1 = E[w′mlµ] =
1

γ
θ2, (C.8)

B2 = E[w′mvµ] =
1

γ
1′NΣ−1µ, (C.9)

A0 = E[w′0Σw0] = w′0Σw0, (C.10)

A1 = E[w′mlΣwml] =
c1

γ2

(
N

K
+ θ2

)
, (C.11)

A2 = E[w′mvΣwmv] =
c1

γ2
1′NΣ−11N , (C.12)

A01 = E[w′0Σwml] =
1

γ
w′0µ, (C.13)

A02 = E[w′0Σwmv] =
1

γ
w′01N , (C.14)

A12 = E[w′mlΣwmv] =
c1

γ2
1′NΣ−1µ. (C.15)

Solving for a, b, and c,

a∗ =
1

γ + δ
a∗0, (C.16)

b∗ =
1

γ + δ
b∗0, (C.17)

c∗ =
1

γ + δ

B1 − a∗0A1 − b∗0A12

A01

+
δ

γ + δ
, (C.18)

where

a∗0 =
B1(A0A2 − A2

02)−B2(A0A12 − A01A02)−B0(A01A2 − A02A12)

A0A1A2 − A1A2
02 − A0A2

12 − A2A2
01 + 2A01A02A12

, (C.19)

b∗0 =
B1(A01A02− A0A12)−B2(A2

01 − A0A1)−B0(A1A02 − A01A12)

A0A1A2 − A1A2
02 − A0A2

12 − A2A2
01 + 2A01A02A12

. (C.20)
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D Moments of Optimal Portfolio Weights

D.1 Proof of Proposition 3

When w0 = wt−, the turnover aversion portfolio at time t, wct , can be written as

wct = (1− α)w∗t + αwct−1

= (1− α)w∗t + α((1− α)w∗t−1 + αwct−2)

...

= (1− α)(w∗t + αw∗t−1 + · · ·+ αt−1w∗1) + αtw.

(D.1)

Since the returns are i.i.d., E(w∗t ) = E(w∗t−1) = · · · = E(w∗1), and it follows that

E(wct ) = (1− αt)E(w∗t ) + αtw, (D.2)

V (wcit) = (1− α)2V (w∗it + αw∗it−1 + · · ·+ αt−1w∗i1), (D.3)

where wit denotes the i-th element of wt.

When w0 = wew, the turnover aversion portfolio at time t, wet , has the form

wet = (1− α)w∗t + αwew, (D.4)

and its moments are given by

E(wet ) = (1− α)E(w∗t ) + αwew, (D.5)

V (weit) = (1− α)2V (w∗it). (D.6)

As 0 < Cov(w∗it, w
∗
it−1) < 1 for t > 1,

(1− α)2(1 + α2 + · · ·+ α2(t−1))V (w∗it) < V (wcit) < (1− αt)2V (w∗it). (D.7)

Therefore,

V (weit) < V (wcit) < V (w∗it). (D.8)
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D.2 Proof of Proposition 4

Note that

∆wcit = (1− α)∆w∗it + α∆wcit−1, (D.9)

∆weit = (1− α)∆w∗it. (D.10)

Therefore,

E
[
(∆wcit)

2
]

= (1− α)2E
[
(∆w∗it)

2
]

+ α2E
[
(∆wcit−1)2

]
+ 2α(1− α)E

[
∆w∗it∆w

c
it−1

]
,

(D.11)

E
[
(∆weit)

2
]

= (1− α)2E
[
(∆w∗it)

2
]
. (D.12)

If E
[
∆w∗it∆w

c
it−1

]
> − α

2(1− α)
E
[
(∆wcit−1)2

]
,

E
[
(∆weit)

2
]
< E

[
(∆wcit)

2
]
. (D.13)

Since ∆wci1 = (1 − α)(w∗i1 − wi) and ∆w∗i1 = (w∗i1 − wi), E [(∆wci1)2] < E [(∆w∗i1)2]. From

(D.9), it follows that

E
[
(∆wcit)

2
]
< E

[
(∆w∗it)

2
]
. (D.14)

E Treatment of Negative Weights on the Risky Port-

folio

While financial theories do not allow negative expected returns associated with positive risks,

it is not uncommon to have negative mean estimates. This can lead to a negative optimal

weight on the risky portfolio as illustrated in Figure E.1. In this event, the global minimum-

variance portfolio will have a negative expected return, and the utility maximizing portfolio

will short the tangent portfolio PT and invest the proceeds in the risk-free asset, thus being

placed somewhere on the upper part of the dashed line. A tangent portfolio with a positive

slope does not exist in this case, and the usual method to find the tangent portfolio, i.e.,

dividing the risky asset weights by their sum will lead to PT , which has the minimum Sharpe

ratio and thereby is worse off than any other portfolios in the feasible set.

Suppose the vertical dotted line indicates the target variance, σ2
max, and the variance

of the tangent portfolio is σ2
T . If the tangent portfolio weights are multiplied by σmax/σT ,

the resulting portfolio will be P1, whereas the optimal portfolio should be P ′1 which can be
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obtained with the multiplication factor, −σmax/σT . Similarly, the variance targeting portfolio

based on the global minimum-variance portfolio should be P ′2 rather than P2. This paper

adopts this approach.
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Figure E.1: Variance Targeting When the Tangent Portfolio Has a Negative Expected Return

This graph illustrates the minimum-variance portfolios when the tangent portfolio has a negative expected
return. PT and PG respectively denote the tangent portfolio and the global minimum-variance portfolio. The
dashed line represents the feasible set that can be obtained from PT , whereas the dash-dot line represents
the feasible set from PG. P1 and P ′1 (P2 and P ′2) are the portfolios derived from PT (PG) that satisfy the
variance target σ2

max.

F Detailed Analysis of Empirical Results

This section provides detailed analyses of the empirical results. Analyses are primarily based

on the results presented in Table 8 and 9 but also refer to other results such as those for

T = 60 and 120, which can be found in Internet Appendix.

ML vs. TZML vs. TAML Under variance targeting, ML outperforms EW in ten

datasets and has a considerably higher mean CE before transaction costs. While much of

the advantage disappears after transaction costs, it still outperforms EW in nine datasets.

The benefit of combining ML with EW is evident from TZML and TAML. The mean CE’s of

TZML and TAML(0) after transaction costs are respectively 0.613 and 0.623, whereas those

of ML and EW are respectively 0.489 and 0.243. TZML and TAML(0) outperform EW in

all but one datasets before transaction costs and in ten datasets after transaction costs. The
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improvement over ML is particularly noticeable when T is small (see Internet Appendix).

Unlike the superior performance of TAML(0) to TZML observed in the simulation studies,

they perform comparably when tested on the real market data.

KZ vs. TZML vs. TZKZ Consistent with the findings of Tu and Zhou (2011), TZKZ

outperforms TZML and KZ. This can be anticipated to some extent as TZKZ involves three

portfolios, whereas the others involve only two. Between KZ and TZML, TZML yields higher

CE’s, whilst KZ outperforms EW more often. Overall, KZ and TZML perform comparably

well when T is large, but the performance of KZ deteriorates rapidly as T decreases. This

can be attributed to the fact that both ML and MV which comprise KZ depend on the input

parameters and therefore subject to estimation errors. As discussed below, the performance

of KZ improves markedly when it is augmented with turnover aversion.

Effects of Turnover Aversion Penalizing turnover from wew improves portfolio perfor-

mance in most cases regardless of the base model. Improvements are particularly noticeable

in the presence of transaction costs and in terms of the outperformance ratio: among the

models with similar CE’s, those incorporating turnover aversion tend to outperform EW

more frequently. Among KZ, TZML, TZKZ, and TAML, KZ benefits most by incorporating

turnover aversion. This is because the original KZ, contrary to the others, does not involve

wew. Comparing KZ with TZKZ , the best performing KZ usually outperforms the best per-

forming TZKZ even though both models involve the same three portfolios: e.g., in Table 8,

the best performing KZ (KZ(3)) and TZKZ (TZKZ(2)) have the mean CE after transaction

costs of 0.701 and 0.690, respectively.

The models with w0 = wt−, i.e., KZc, TZMLc, TZKZc, and TAMLc, perform rather

disappointingly. When these are compared with their counterparts with w0 = wew, the

latter models almost always perform better with respect to all criteria. TAMLc performs

particularly poor: TAMLc(1) underperforms TAML(0) even after transaction costs. This

suggests that the estimation errors in the actual market data are substantially higher than

assumed: in simulations, TAMLc outperformed TAML when estimation errors were small

(T = 120 or 240) but was outperformed otherwise (T=60).

The above finding conveys an important message as the turnover aversion models with

w0 = wt− are similar to the models that take transaction costs into account during op-

timization (e.g., Gârleanu and Pedersen, 2013; DeMiguel et al., 2015; Olivares-Nadal and

DeMiguel, 2015). Shrinking towards the current portfolio does improve portfolio perfor-

mance but is less effective than shrinking towards the equal-weight portfolio regardless of

the presence of transaction costs. It appears that a certain degree of robustness should be
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assured beforehand in order to benefit from the former approach.

Estimation of K In TAMLK,K is estimated using the method described in Appendix A.3.

TAMLK(0) and TAMLK(1) respectively outperform TAML(0) and TAML(1) regardless of

T , but the improvement is more prominent when δ = 0. Besides, TAMLK performs more

consistently across the datasets and outperform EW more frequently. This suggests that

the proposed method addresses the uncertainty in mean more adequately than the simple

assumption of K = T . With the better assessment of estimation errors, the δ required to

maximize performance would become smaller. This explains why the performance improve-

ment is more pronounced when δ = 0.

TML and TMV TML and TMV respectively outperform ML and MV as well as EW.

They seem to share the characteristics of TAML and TAMV. However, with the tolerance

factor, τ = 0.05, they do not perform particularly well compared to the turnover aversion

models. Although not pursued here, research on determining optimal τ must be worthwhile.

MV vs. TAMV vs. VT Both MV and TAMV(0) perform poorly and are among the

worst performers. This is an unexpected result since MV is known to demonstrate robust

performance: see e.g., DeMiguel et al. (2009); Han (2016). The poor performance mainly

stems from the datasets; D6, D7, D8, and D9, where the global minimum-variance portfolio

often has a negative expected return. When the expected return is negative, as explained in

Appendix E, the optimal portfolio becomes P ′2 which has a negative exposure to the global

minimum-variance portfolio. While, in principle, P ′2 should outperform P2, P2 is found to

perform better and its performance is comparable to that of EW (unreported). This explains

why these models perform poorly as opposed to what has been reported in the literature. The

results from utility maximization where variance minimizing portfolios are unadjusted also

confirm this: they perform comparably to or outperform EW. Although negative expected

returns are allowed in this paper to reveal potential issues, it would be best in practice to

prevent such cases in the first place by either using an alternative estimator or excluding

negative return assets.

Contrary to the simulation results, incorporating turnover aversion (TAMV(1)) improves

performance significantly. This indicates that the actual estimation error of the covariance

matrix is larger than assumed.

The short-sale constrained models perform better than their counterparts especially in

terms of the outperformance ratio: TAMV+ in particular has a much higher CE and out-

performs EW in all but one datasets when T = 120 in variance targeting. VT also performs
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robustly. This is because VT is implicitly short-sale constrained and depends only on the

cross-sectional variation of the variances, which is stable over time. Nonetheless, overall

performance of the variance minimization models is not impressive.

Effects of Short-sale Constraint When optimal portfolio models are subject to the

short-sale constraint, they perform robustly and outperform EW more frequently compared

with their unconstrained counterparts. In fact, the short-sale constrained models are ranked

at the top in terms of the outperformance ratio and demonstrate robust performance in utility

maximization. They also have significantly lower turnover and leverage. Nevertheless, their

performance is rather suppressed as evidenced by the low CE’s. The short-sale constraint is

an effective tool to enhance robustness especially when parameter uncertainty is large, but

at the same time it hinders high return potential.

Effects of Estimation Window Size Asset returns are not stationary over a long period,

and using a large estimation window does not necessarily lead to better moment estimates.

Determining the optimal estimation window size depends mainly on two aspects: estimation

errors and transaction costs.

Based on the performance before transaction costs, many portfolio models turn out to per-

form best when T = 120 and worst when T = 60. Exceptions are the variance-minimization

models which perform best when T = 240. It appears that the mean estimation error de-

clines with T until some point and then increases again, whereas the covariance estimation

error continues to decline with T at least within the range considered here. The window size

also has an effect on the portfolio loadings of the shrinkage estimators: a larger T will put

more weight on ŵml regardless of the actual estimation errors, and their performance could

deteriorate rapidly beyond a certain T . On the other hand, a larger window size is always

beneficial in terms of transaction costs as the moment estimates become more persistent

leading to lower turnover.

The window size will have to be determined considering several factors such as the portfo-

lio strategy, actual transaction costs, and dataset. Nevertheless, for the datasets considered

in this paper, T = 120 seems to be a reasonable choice especially for the turnover aversion

models. Although not pursued in this paper, applying different window sizes to mean and

covariance estimations may improve overall estimation accuracy.

Performance of EW While EW is known to perform superior, the empirical results

in this paper are rather contrary. EW is one of the worst performing portfolios in terms

of mean CE. In addition, most other portfolios outperform EW in more than half of the
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datasets when T = 120 or 240 in variance targeting. This unexpected result is to some

extent related to the variance constraint. Optimal portfolios generally perform well and

robustly under the variance constraint, but many of them are outperformed by (unadjusted)

EW without the constraint. If EW is adjusted so as to maximize utility, its performance also

drops considerably and it is outperformed by many optimal portfolios again. Still, optimal

portfolios perform relatively worse without the variance constraint.

G Random Portfolio Convergence

Consider a portfolio comprised of N assets. The portfolio weights, {wi|w1 + . . . + wN =

1, wi > 0}, form an (N − 1)-dimensional simplex and follow a Dirichlet distribution of order

N :

f(w1, . . . , wN) =
1

B(α1, . . . , αN)

N∏
i=1

wαi−1
i . (G.1)

If the weights are randomly chosen from a uniform distribution, α1 = α2 = . . . = αN = 1,

and the first moment of the i-th weight is given by

E(Wi) =
Γ(1 + 1)Γ(N)

Γ(N + 1)Γ(1)
=

1

N
, (G.2)

and the second moments are given by

E
(
W 2
i

)
=

Γ(1 + 2)Γ(N)

Γ(N + 2)Γ(1)
=

2

(N + 1)N
, (G.3)

E(WiWj) =
Γ(1 + 1)Γ(1 + 1)Γ(N)

Γ(N + 2)Γ(1)Γ(1)
=

1

(N + 1)N
. (G.4)

Therefore, the random portfolio converges to the equal-weight portfolio as N increases.
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